
CSC/SD-92/6028
560-7SUG/0290

International Solar-Terrestrial Physics
(ISTP) Central Data Handling Facility
(CDHF) Software System (ICSS)
Programmer’s Guide to Key Parameter
Generation Software

Revision 7

Prepared for

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland

Under

Contract NAS5-31000
Subcontract HQ-001057
SLA 7 – ISTP

November 1996

CSC/SD-92/6028
560-7SUG/0290

International Solar-Terrestrial Physics (ISTP)
Central Data Handling Facility (CDHF)

Software System (ICSS) Programmer’s Guide
to Key Parameter Generation Software (KPGS)

Revision 7

Prepared for

GODDARD SPACE FLIGHT CENTER

by

COMPUTER SCIENCES CORPORATION

November 1996

Revised by: Computer Sciences
Corporation
Contract NAS5-31000
Subcontract HQ-001057
SLA 7 – ISTP

Reviewed by:

G. Blackwell
KPGS Integration Test Team Lead, CSC

Quality Assured by:

S. Whisonant
ISTP CDHF Product Assurance Officer, CSC

Approved by:

S. Whitesell
Manager, Data Processing Systems, CSC

H. Williams
Mission Director, Mission Management Office
Code 510.2

CSC/SD-92/6028
560-7SUG/0290

iii

TABLE OF CONTENTS

Section 1—Introduction

1.1 Purpose and Scope... 1–1

1.2 International Solar-Terrestrial Physics Key Parameter Generation Overview.......................... 1–1

1.3 Document Organization.. 1–1

Section 2—Key Parameter Processing on the ISTP CDHF

2.1 Processing Schema... 2–1

2.2 Key Parameter Processing Input.. 2–1

2.2.1 Cataloged Input Files... 2–1

2.2.2 Calibration Parameter Files.. 2–1

2.2.3 PI Parameter File... 2–2

2.3 Key Parameter Processing Output... 2–2

2.3.1 Cataloged Output (Key Parameter) Files... 2–2

2.3.2 Scratch/Intermediate Files.. 2–2

2.3.3 User Message File... 2–3

2.3.4 Error/Status Messages.. 2–3

2.4 CDHF Development Environment... 2–4

2.4.1 KPGS Development and Test... 2–4

2.4.2 KPGS, Calibration Data, and Parameter File Delivery... 2–2

2.4.3 KPGS Problem Reporting.. 2–4

2.4.4 SQL*Forms Operating Instructions... 2–4

2.5 Key Parameter Reprocessing...2–16

Section 3—Coding Standards

3.1 CDHF FORTRAN Language Standards... 3–1

3.2 CDHF C Language Standards... 3–1

3.3 KPGS Program Structure.. 3–1

3.3.1 Naming Conventions... 3–1

3.3.2 Required Definitions.. 3–2

CSC/SD-92/6028
560-7SUG/0290

iv

3.3.3 Required Support Routines... 3–3

3.3.4 CDF Routines... 3–4

3.3.5 FORTRAN Logical Unit Numbers... 3–5

CSC/SD-92/6028
560-7SUG/0290

v

3.3.6 Required Include Files... 3–5

3.3.7 Required Error–Handling Procedures.. 3–5

3.4 CDF Key Parameter File Conventions... 3–6

Section 4—Support Routine Descriptions

4.1 ICSS_KPG_INIT.. 4–4

4.1.1 Purpose... 4–4

4.1.2 Description.. 4–4

4.1.3 Interfaces.. 4–4

4.1.4 Calling Sequence... 4–4

4.1.5 Error Conditions.. 4–5

4.2 ICSS_KPG_TERM... 4–5

4.2.1 Purpose... 4–5

4.2.2 Description.. 4–5

4.2.3 Interfaces.. 4–5

4.2.4 Calling Sequence... 4–6

4.2.5 Error Conditions.. 4–6

4.3 ICSS_OPEN_ATT.. 4–7

4.3.1 Purpose... 4–7

4.3.2 Description.. 4–7

4.3.3 Interfaces.. 4–7

4.3.4 Calling Sequence... 4–7

4.3.5 Error Conditions.. 4–7

4.4 ICSS_OPEN_HK... 4–8

4.4.1 Purpose... 4–8

4.4.2 Description.. 4–8

4.4.3 Interfaces.. 4–8

4.4.4 Calling Sequence... 4–8

4.4.5 Error Conditions.. 4–8

4.5 ICSS_OPEN_LZ.. 4–9

4.5.1 Purpose... 4–9

4.5.2 Description.. 4–9

CSC/SD-92/6028
560-7SUG/0290

vi

4.5.3 Interfaces.. 4–9

4.5.4 Calling Sequence... 4–9

4.5.5 Error Conditions.. 4–9

4.6 ICSS_OPEN_ORB...4–10

4.6.1 Purpose...4–10

4.6.2 Description..4–10

4.6.3 Interfaces..4–10

4.6.4 Calling Sequence...4–10

4.6.5 Error Conditions..4–11

4.7 ICSS_OPEN_SD (GEOTAIL Support Only)..4–11

4.7.1 Purpose...4–11

4.7.2 Description..4–11

4.7.3 Interfaces..4–11

4.7.4 Calling Sequence...4–11

4.7.5 Error Conditions..4–11

4.8 ICSS_RET_ATT..4–12

4.8.1 Purpose...4–12

4.8.2 Description..4–12

4.8.3 Interfaces..4–12

4.8.4 Calling Sequence...4–12

4.8.5 Error Conditions..4–13

4.9 ICSS_RET_HK..4–13

4.9.1 Purpose...4–13

4.9.2 Description..4–13

4.9.3 Interfaces..4–14

4.9.4 Calling Sequence...4–14

4.9.5 Error Conditions..4–15

4.10 ICSS_RET_LZ...4–15

4.10.1 Purpose...4–15

4.10.2 Description..4–15

4.10.3 Interfaces..4–16

4.10.4 Calling Sequence...4–16

CSC/SD-92/6028
560-7SUG/0290

vii

4.10.5 Error Conditions..4–17

4.11 ICSS_RET_ORB..4–17

4.11.1 Purpose...4–17

4.11.2 Description..4–17

4.11.3 Interfaces..4–18

4.11.4 Calling Sequence...4–18

4.11.5 Error Conditions..4–18

4.12 ICSS_RET_SD64 (GEOTAIL Support Only)...4–19

4.12.1 Purpose...4–19

4.12.2 Description..4–19

4.12.3 Interfaces..4–20

4.12.4 Calling Sequence...4–20

4.12.5 Error Conditions...4-20

4.13 ICSS_RET_SD (GEOTAIL Support Only)...4–20

4.13.1 Purpose...4–20

4.13.2 Description..4–20

4.13.3 Interfaces..4–21

4.13.4 Calling Sequence...4–21

4.13.5 Error Conditions..4–22

4.14 ICSS_KPG_COMMENT..4–22

4.14.1 Purpose...4–22

4.14.2 Description..4–22

4.14.3 Interfaces..4–22

4.14.4 Calling Sequence...4–23

4.14.5 Error Conditions..4–23

4.15 ICSS_TRANSF_ORB...4–23

4.15.1 Purpose...4–23

4.15.2 Description..4–23

4.15.3 Interfaces..4–24

4.15.4 Calling Sequence...4–24

4.15.5 Error Conditions..4–25

4.16 ICSS_TRANSF_ATT...4–25

CSC/SD-92/6028
560-7SUG/0290

viii

4.16.1 Purpose...4–25

4.16.2 Description..4–26

4.16.3 Interfaces..4–26

4.16.4 Calling Sequence...4–26

4.16.5 Error Conditions..4–27

4.17 ICSS_CNVRT_TO_EPOCH...4–28

4.17.1 Purpose...4–28

4.17.2 Description..4–28

4.17.3 Interfaces..4–28

4.17.4 Calling Sequence...4–28

4.17.5 Error Conditions..4–29

4.18 ICSS_GET_CD..4–29

4.18.1 Purpose...4–29

4.18.2 Description..4–29

4.18.3 Interfaces..4–29

4.18.4 Calling Sequence...4–30

4.18.5 Error Conditions..4–30

4.19 ICSS_GET_PF...4–30

4.19.1 Purpose...4–30

4.19.2 Description..4–30

4.19.3 Interfaces..4–30

4.19.4 Calling Sequence...4–31

4.19.5 Error Conditions..4–31

4.20 ICSS_SPINPH_SIRIUS (GEOTAIL Support Only)..4–31

4.20.1 Purpose...4–31

4.20.2 Description..4–31

4.20.3 Interfaces..4–31

4.20.4 Calling Sequence...4–32

4.20.5 Error Conditions..4–33

4.21 ICSS_GET_REFERENCE_FILES (IMP–8 Support Only)...4–33

4.21.1 Purpose...4–33

4.21.2 Description..4–33

CSC/SD-92/6028
560-7SUG/0290

ix

4.21.3 Interfaces..4–33

4.21.4 Calling Sequence...4–33

4.21.5 Error Conditions..4–34

4.22 ICSS_SPINPH_WIND_LZ (WIND Support Only)...4–34

4.22.1 Purpose...4–34

4.22.2 Description..4–34

4.22.3 Interfaces..4–34

4.22.4 Calling Sequence...4–35

4.22.5 Error Conditions..4–36

4.23 ICSS_PAYLOAD_TO_GSE...4–36

4.23.1 Purpose...4–36

4.23.2 Description..4–36

4.23.3 Interfaces..4–37

4.23.4 Calling Sequence...4–37

4.23.5 Error Conditions..4–38

4.24 ICSS_CNVT_FROM_RP...4–38

4.24.1 Purpose...4–38

4.24.2 Description..4–38

4.24.3 Interfaces..4–38

4.24.4 Calling Sequence...4–38

4.24.5 Error Conditions..4–39

4.25 ICSS_POS_OF_SUN..4–39

4.25.1 Purpose...4–39

4.25.2 Description..4–39

4.25.3 Interfaces..4–39

4.25.4 Calling Sequence...4–39

4.25.5 Error Conditions..4–40

4.26 ICSS_VELOCITY_TRANS..4–40

4.26.1 Purpose...4–40

4.26.2 Description..4–40

4.26.3 Interfaces..4–40

4.26.4 Calling Sequence...4–41

CSC/SD-92/6028
560-7SUG/0290

x

4.26.5 Error Conditions..4–42

4.27 ICSS_GCI_TO_GEODETIC...4–42

4.27.1 Purpose...4–42

4.27.2 Description..4–42

4.27.3 Interfaces..4–42

4.27.4 Calling Sequence...4–43

4.27.5 Error Conditions..4–43

4.28 ICSS_GEODETIC_TO_GCI...4–43

4.28.1 Purpose...4–43

4.28.2 Description..4–43

4.28.3 Interfaces..4–43

4.28.4 Calling Sequence...4–43

4.28.5 Error Conditions..4–44

4.29 ICSS_SD_BLK_TYP..4–44

4.29.1 Purpose...4–44

4.29.2 Description..4–44

4.29.3 Interfaces..4–44

4.29.4 Calling Sequence...4–44

4.29.5 Error Conditions..4–44

4.30 ICSS_INDICES..4–45

4.30.1 Purpose...4–45

4.30.2 Description..4–45

4.30.3 Interfaces..4–45

4.30.4 Calling Sequences...4–45

4.30.5 Error Conditions..4–46

4.31 ICSS_CNVRT_EPOCH_TO_PB5...4–46

4.31.1 Purpose...4–46

4.31.2 Description..4–46

4.31.3 Interfaces..4–46

4.31.4 Calling Sequence...4–46

4.31.5 Error Conditions..4–47

4.32 ICSS_TRANSF_TO_MTC..4–47

CSC/SD-92/6028
560-7SUG/0290

xi

4.32.1 Purpose...4–47

4.32.2 Description..4–47

4.32.3 Interfaces..4–47

4.32.4 Calling Sequence...4–48

4.32.5 Error Conditions..4–49

4.33 ICSS_TRANSF_TO_MSPC..4–49

4.33.1 Purpose...4–49

4.33.2 Description..4–49

4.33.3 Interfaces..4–50

4.33.4 Calling Sequence...4–50

4.33.5 Error Conditions..4–51

4.34 ICSS_GET_FILE..4–51

4.34.1 Purpose...4–51

4.34.2 Description..4–51

4.34.3 Interfaces..4–52

4.34.4 Calling Sequences...4–52

4.34.5 Error Conditions..4–53

CSC/SD-92/6028
560-7SUG/0290

xii

4.35 ICSS_COMPUTE_CGMLT..4–53

4.35.1 Purpose...4–53

4.35.2 Description..4–53

4.35.3 Interfaces..4–53

4.35.4 Calling Sequences...4–53

4.35.5 Error Conditions..4–54

4.36 ICSS_COMPUTE_EDMLT..4–54

4.36.1 Purpose...4–54

4.36.2 Description..4–54

4.36.3 Interfaces..4–55

4.36.4 Calling Sequences...4–55

4.36.5 Error Conditions..4–56

4.37 ICSS_OPEN_PO_SPINPH (POLAR Support Only)..4–56

4.37.1 Purpose...4–56

4.37.2 Description..4–56

4.37.3 Interfaces..4–56

4.37.4 Calling Sequence...4–56

4.37.5 Error Conditions..4–57

4.38 ICSS_RET_PO_SPINPH (POLAR Support Only)..4–57

4.38.1 Purpose...4–57

4.38.2 Description..4–57

4.38.3 Interfaces..4–57

4.38.4 Calling Sequence...4–57

4.38.5 Error Conditions..4–58

4.39 ICSS_OPEN_DP_ATT (POLAR Support Only)...4–58

4.39.1 Purpose...4–58

4.39.2 Description..4–58

4.39.3 Interfaces..4–58

4.39.4 Calling Sequence...4–59

4.39.5 Error Conditions..4–59

4.40 ICSS_RET_DP_ATT (POLAR Support Only)..4–59

4.40.1 Purpose...4–59

CSC/SD-92/6028
560-7SUG/0290

xiii

4.40.2 Description..4–59

4.40.3 Interfaces..4–59

4.40.4 Calling Sequence...4–60

4.40.5 Error Conditions..4–61

4.41 ICSS_ACF_TO_GCI (SOHO Support Only)..4–61

4.41.1 Purpose...4–61

4.41.2 Description..4–61

4.41.3 Interfaces..4–61

4.41.4 Calling Sequence...4–62

4.41.5 Error Conditions..4–62

4.42 ICSS_OPEN_SOHO_LZ (SOHO Support Only)..4–62

4.42.1 Purpose...4–62

4.42.2 Description..4–63

4.42.3 Interfaces..4–63

4.42.4 Calling Sequence...4–63

4.42.5 Error Conditions..4–63

4.43 ICSS_RET_SOHO_PACKETS (SOHO Support Only)...4–63

4.43.1 Purpose...4–63

4.43.2 Description..4–64

4.43.3 Interfaces..4–64

4.43.4 Calling Sequence...4–64

4.43.5 Error Conditions..4–65

4.44 ICSS_OPEN_SOHO_HK (SOHO Support Only)...4–65

4.44.1 Purpose...4–65

4.44.2 Description..4–65

4.44.3 Interfaces..4–65

4.44.4 Calling Sequence...4–65

4.44.5 Error Conditions..4–66

4.45 ICSS_RET_SOHO_HK (SOHO Support Only)..4–66

4.45.1 Purpose...4–66

4.45.2 Description..4–66

4.45.3 Interfaces..4–66

CSC/SD-92/6028
560-7SUG/0290

xiv

4.45.4 Calling Sequence...4–67

4.45.5 Error Conditions..4–67

4.46 ICSS_OPEN_SOHO_ATT (SOHO Support Only)..4–67

4.46.1 Purpose...4–67

4.46.2 Description..4–68

4.46.3 Interfaces..4–68

4.46.4 Calling Sequence...4–68

4.46.5 Error Conditions..4–68

4.47 ICSS_RET_SOHO_ATT (SOHO Support Only)..4–68

4.47.1 Purpose...4–68

4.47.2 Description..4–69

4.47.3 Interfaces..4–69

4.47.4 Calling Sequence...4–69

4.47.5 Error Conditions..4–70

4.48 ICSS_UTC_TAI_OFFSET..4–70

4.48.1 Purpose...4–70

4.48.2 Description..4–70

4.48.3 Interfaces..4–70

4.48.4 Calling Sequence...4–71

4.48.5 Error Conditions..4–71

4.49 ICSS_GSM_SM..4-72

4.49.1 Purpose..4-72

4.49.2 Description...4-72

4.49.3 Interfaces...4-72

4.49.4 Calling Sequence..4-72

4.49.5 Error Conditions...4-73

4.50 ICSS_TILT_ANGLE...4-73

4.50.1 Purpose..4-73

4.50.2 Description...4-73

4.50.3 Interfaces...4-73

4.50.4 Calling Sequence..4-74

4.50.5 Error Conditions...4-74

CSC/SD-92/6028
560-7SUG/0290

xv

4.51 ICSS_TSY..4-74

4.51.1 Purpose..4-74

4.51.2 Description...4-74

4.51.3 Interfaces...4-74

4.51.4 Calling Sequence..4-75

4.51.5 Error Conditions...4-77

4.52 ICSS_POS_VEL_OF_CELESTIAL..4-77

4.52.1 Purpose..4-77

4.52.2 Description...4-77

4.52.3 Interfaces...4-77

4.52.4 Calling Sequence..4-78

4.52.5 Error Conditions...4-78

Section 5—Near-Real-Time Key Parameter Generation

5.1 NRT Server System...5-1

5.1.1 NRT Client Routines..5-1

5.1.2 Sample Clients...5-6

5.2 NRT Key Parameter Generation Processing... 5–7

5.3 NRT Key Parameter Generation Software.. 5–7

5.3.1 NRT and Playback Environment Support Routine Differences............................. 5–7

5.3.2 NRT KPGS Design Considerations.. 5–9

5.4 NRT–Specific Support Routines..5–10

5.4.1 ICSS_NRT_ACTIVE..5-12

5.4.2 ICSS_WRITE_3DP_KP...5–13

5.4.3 ICSS_WRITE_MFI_KP...5–14

5.4.4 ICSS_WRITE_SWE_KP..5–15

5.4.5 ICSS_VAX_TO_IEEE...5–17

5.5 NRT KPGS Testing..5–18

5.5.1 Creating the NAMELIST Files...5–19

5.5.2 Creating the NRT Command File...5–19

5.5.3 Establishing the NRT Environment...5–21

5.5.4 Executing the KPGS Program...5–21

CSC/SD-92/6028
560-7SUG/0290

xvi

5.5.5 Inspecting the Test Results...5–22

Section 6—Special Programming Notes

6.1 B Field Major Frame Averages... 6–1

6.2 Status of Instruments.. 6–1

6.3 Magnetic Local Time.. 6–4

6.3.1 EDMLT .. 6–4

6.3.2 CGMLT.. 6–4

Appendix A—Sample Test Programs

Appendix B—Sample CDF Skeleton Tables

Appendix C—Error Messages

Appendix D—KPGS Delivery Form

Abbreviations and Acronyms

References

CSC/SD-92/6028
560-7SUG/0290

1–1

SECTION 1—INTRODUCTION

1.1 Purpose and Scope
This document describes the International Solar-Terrestrial Physics (ISTP) Central Data Handling Facility
(CDHF) Software System (ICSS)-supplied support routines for use by the principal investigator (PI) key
parameter generation software (KPGS) and the standards and procedures to be used in coding and testing the
KPGS. Each support routine shows an explanation of the user-supplied input, the routine function, the routine
output, and error conditions.

1.2 International Solar-Terrestrial Physics Key Parameter
Generation Overview

One of the primary functions of the ISTP CDHF is to process ISTP level-zero and Geomagnetic Tail
(GEOTAIL) Laboratory Scientific Information Retrieval Integrated Utilization System (SIRIUS) instrument
datasets into key parameter datasets. Before launch, the ISTP instrument investigators deliver the software
necessary to produce these key parameters from the level-zero or SIRIUS data. This software is integrated
with the ICSS-supplied support routines and, after acceptance testing on the CDHF, will run as production
jobs within the CDHF production environment. All production jobs are under configuration control.
The main purpose of the ICSS support routines is to provide an interface between the CDHF data
management system and the PI-supplied KPGS. The ICSS support routines also ensure that the key parameters
are generated in the CDHF standard format and that the proper accounting information is maintained in the
CDHF catalog. These support routines serve as the interface between the KPGS and the CDHF system-level
functions to be used for opening, reading, closing, or providing direct access to CDHF-cataloged files. The
support routines perform all file access functions for CDHF online data files, as well as provide the PI with
coordinate conversion routines.

1.3 Document Organization
This document is organized into six sections. Section 1 presents the document’s purpose and scope, a general
overview of ISTP key parameter generation, and document organization. Section 2 discusses the processing
schema input and output required for key parameter generation on the ISTP CDHF and provides an overview
of the development and test environment on the CDHF and guidelines for reprocessing key parameters.
Section 3 addresses the coding standards the PI’s KPGS will use. Section 4 details the support routines,
including descriptions for each routine’s interfaces, calling sequence, and error conditions. Section 5
describes near-real-time (NRT) data receipt and processing and NRT support routines. Section 6 provides
special programming notes for the Interplanetary Physics Laboratory (WIND), Polar Plasma Laboratory
(POLAR), and future missions that will be supported by the CDHF.
Appendix A contains information about nine sample KPGS programs. It provides the online location of these
sample programs in the SYS$PUBLIC directory of the CDHF for easy access. The sample programs consist
of FORTRAN and C versions that illustrate the way users should access the support routines within their
program structures. These sample KPGS programs include code that illustrates KPGS programs for NRT key
parameter generation, as well as special coding techniques unique to the Solar and Heliospheric Observatory
(SOHO) mission. Appendix B provides information and the online location for sample common data format
(CDF) skeleton tables used in the generation of key parameter output file(s). Appendix C contains error
messages and definitions. Appendix D contains the online location of a sample delivery form used in the
delivery of KPGS program and data files.

CSC/SD-92/6028
560-7SUG/0290

2–1

SECTION 2—KEY PARAMETER PROCESSING ON THE ISTP
CDHF

2.1 Processing Schema
Key parameter processing, using playback data, generally takes place daily on the ISTP CDHF. For each
calendar date, a key parameter dataset is generated for each instrument of each mission. Each key parameter
dataset generation is viewed as an independent process; that is, previously generated key parameter datasets
are not used as input for processing subsequent key parameter datasets. Therefore, key parameters may be
processed in any order as long as the necessary input datasets are available (i.e., level-zero, housekeeping,
orbit, attitude, spin-phase, and calibration). The ISTP CDHF will support the processing of data over
multiple days for the generation of key parameters.
In special cases, key parameters can be generated on the CDHF in NRT using the real-time data acquired
during scheduled Deep Space Network (DSN) passes.
The following sections describe the types of input and output required for key parameter generation on the
ISTP CDHF using playback data. Key parameter generation using NRT data is described in Section 5.

2.2 Key Parameter Processing Input
The three sections that follow describe the various input to a key parameter processing program executing on
the ISTP CDHF. Because normal production of key parameter processing on the CDHF is batch oriented, no
interactive input is allowed.

2.2.1 Cataloged Input Files
All input files to a key parameter processing program must have entries in the ISTP CDHF catalog. Cataloged
files are read-only files identified using attributes such as mission, instrument, data type, and calendar date.
Each key parameter processing program produces a key parameter dataset from the input telemetry data.
Normally, the timespan of the generated key parameter file corresponds to the timespan of the primary
telemetry input file. Cataloged files available as input for key parameter generation include level-zero or
SIRIUS instrument, housekeeping, orbit, attitude, calibration, and instrument parameter data. Orbit and
attitude files are selected based on the best available files at the time of key parameter processing. In most
cases, predictive files are used, unless definitive files are available. PIs may not use existing key parameter
files as input for creating a new key parameter file. Each file in the catalog is associated with a calendar
date.

2.2.2 Calibration Parameter Files
PIs may also require a set of files containing calibration parameters specific to their key parameter
processing program. These files are delivered with the PI’s KPGS and placed under configuration control,
along with the corresponding software. The PI’s software is responsible for providing access routines to the
calibration parameters; that is, no support routines are provided to open or read from these calibration files.
There are no project-specified format requirements for calibration parameter files. The ICSS_GET_CD
support routine provides the names of the appropriate calibration files to the KPGS. Updates to the
calibration files are handled in the same manner as updates to the KPGS. All calibration parameter files
delivered to the CDHF are tracked by the CDHF catalog and placed under configuration control. Each
instrument is allowed multiple calibration files, each of which is designated by a unique instrument
component identifier, and multiple versions of each calibration file can be maintained online at the CDHF.
The PI specifies the time range for which the calibration file is valid when the file is delivered to the CDHF;
the PI also specifies the three- or four-character instrument component identifier to be used with the
calibration file. Appendix B of the ISTP KPGS standards and conventions document (Reference 1) contains a
dictionary defining valid instrument component identifiers. The CDHF uses this information to select the
correct versions of the calibration files when key parameter generation is scheduled on the system.

CSC/SD-92/6028
560-7SUG/0290

2–2

2.2.3 PI Parameter File
PIs may also provide a PI parameter file as input to their KPGS. This file contains whatever controls the PI
desires. For example, the parameter file may contain flags to initiate debugging within the KPGS. This file,
like the calibration parameter files, is delivered with the PI’s KPGS. The files are placed under configuration
control and updated throughout the project on request. Each instrument is allowed access to a single
parameter file. The ICSS_GET_PF support routine provides the name of the appropriate parameter file to the
KPGS. The PI’s software is responsible for providing access routines to the parameter file. As with
calibration files, no project-specified requirements apply to PI input parameter files.

2.3 Key Parameter Processing Output
The four sections that follow describe the different categories of output from a key parameter processing
program executing on the ISTP CDHF.

2.3.1 Cataloged Output (Key Parameter) Files
As described in the ISTP KPGS standards and conventions document, the key parameter processing program
creates a key parameter file. The standard format for ISTP key parameter files is the CDF. The structure of
the CDF key parameter file for each instrument reflects the parameters that are written to the file. The CDF
key parameter file is defined by using a CDF skeleton table, which creates a properly formatted but empty
CDF key parameter file for the instrument prior to key parameter generation. The KPGS writes key
parameters to this existing file. The KPGS uses the CDF routines described in Section 4 to write data to the
key parameter file. After key parameter processing completes, the ICSS_KPG_TERM support routine
completes the standard formatted data unit (SFDU) header, closes all key parameter input and output files,
and catalogs the new key parameter file(s). After a file is cataloged, it becomes read-only. The key parameter
output files cannot be modified by any subsequent programs.

2.3.2 Scratch/Intermediate Files
The key parameter processing program may use scratch files during program execution. All scratch files are
to be created in a scratch area defined by the logical name KP_SCRATCH (e.g.,
KP_SCRATCH:scratch_file.dat). The size and number of scratch files are established by each PI.

CSC/SD-92/6028
560-7SUG/0290

2–3

The creation and use of scratch files are under the control of the PI-supplied KPGS. These
files are deleted from the scratch area on program termination. Appendix A contains sample
code fragments illustrating the use of scratch files. A scratch file should be used for runtime processing only
and opened with the delete option (i.e., STATUS=‘SCRATCH’) to ensure that the file is deleted when the
job ends.

2.3.3 User Message File
The user message file is available to KPGS applications for the logging of user-significant events,
conditions, or data. This file is user-specific, created strictly for the use and convenience of the PI/user, and
resides in an area accessible to the user. The logical name, USR_MSG_FILE, is assigned to the KPGS before
its execution. The value for this logical filename is obtained from the database. It is set from the Static
Mission Information Menu of the database interface system by the database administrator (DBA), as
described in the CDHF user’s guide (Reference 2). A user wishing to write data to his or her user message
file must open the file and write, using the provided logical filename. The format and use of this file are
under the control of the KPGS. Users can request their files be sent to them automatically after key parameter
generation (using
a flag set through the Interactive Interface); they can also use the User Data Services to select
the file for transfer. Files can be sent automatically using either the mail facility or the copy command. Files
that are sent automatically using the mail facility are sent to users specified on a distribution list. The
distribution list is established by operations personnel on request from the PI. The copy command option for
automatically receiving user message files is also set up by operations personnel. Files that are sent
automatically using the copy command end up in a directory specified by the PI. PIs should specify the
directory in their own area for which they expect the user message file to be copied (e.g.,
ISTP_USER:[GE_CPI.DUFFY.MSG]). If using the copy option to automatically receive the user message
file, the PI should first execute the command file invoked by the symbol SET_UMSG. The system
periodically deletes the old user message files from the CDHF user message file directory. The PI user
message directory name should be included as part of the documentation that accompanies the KPGS
delivery. Sample code fragments illustrating the creation and use of the user message file are available online
(see Appendix A).

2.3.4 Error/Status Messages
PIs are responsible for maintaining processing control within their KPGS application. After every call to an
ICSS support routine, it is the PI’s responsibility to check the return status code. All ICSS support routines
return the value SS$_NORMAL when they are successful. In some cases, the support routines will return a
warning status that is not necessarily fatal (e.g., “end of file reached”). The end of file is such a warning.
Section 3.3.7 contains a description of the error-handling procedures. The ICSS support routines record the
error messages in the ISTP CDHF system message log. For a complete listing of error/status messages, refer
to Appendix C. Appendix A contains sample programs that illustrate the proper handling of status codes.

2.4 CDHF Development Environment
The KPGS Integration Test Team (KITT) provides the PI teams with a development environment on the
CDHF for the purpose of developing and testing the KPGS. Although the PI teams may develop the KPGS on
their remote data analysis facilities (RDAFs), it is recommended that the KPGS be transferred to the CDHF
and tested in the CDHF development environment before it is delivered. The development environment
provides the PI teams with the computer resources, test data, and supporting software required to test the
KPGS adequately before it is delivered to the KITT for integration testing. The development environment
also provides a mechanism to deliver the KPGS to the CDHF electronically. This section describes the
development environment, its use, and the mechanism by which the KPGS is delivered to the CDHF.

2.4.1 KPGS Development and Test
This section explains the way to apply for a development account and the way to use the resources of the
development environment.

CSC/SD-92/6028
560-7SUG/0290

2–4

2.4.1.1 Getting an Account
To use the CDHF development and test environment, a user must first have an account on the CDHF system.
If the user does not have an account, he or she can apply for one electronically. The user logs onto the system
by doing one of the following:

For systems using the Digital Equipment Corporation’s network (DECnet):
SET HOST ISTP1

or
SET HOST 15461

For systems using Transmission Control Protocol/Internet Protocol (TCP/IP):
telnet istp1.gsfc.nasa.gov

or
telnet 128.183.92.58

When the Username: prompt appears, the user should enter APPLY and press the carriage return. No
password is required. The user will be logged into a captive account that prompts for information needed to
set up a computer account on the CDHF. A day or two after making the application (and after the application
has been approved), the user will receive confirmation that an account has been established.

2.4.1.2 Getting HELP
The CDHF contains an extensive set of online help files that describe operating system commands and
utilities, software packages, and CDHF site-specific information. To get general help information on the
operating system, the user types

HELP
To get CDHF site-specific information (e.g., available software packages, network information, operations
information), the user types

HELP @SITE
Help is also available online to provide KPGS development information. Included in the KPGS help is
information on the ICSS support routines, KPGS delivery, CDF, development environment, and KPGS build
procedures. To get KPGS help information, the user types

HELP @KPGS

2.4.1.3 Developing and Testing KPGS
The CDHF development environment provides the resources for the PI team to develop and test the KPGS.
To test the KPGS in this environment, the user must take the following steps:

1. Establish the test environment under the PI’s account on the CDHF.
2. Compile the KPGS on the CDHF.
3. Link the KPGS with ICSS support routines and libraries.
4. Place test data supplied by the KPGS development team and the KITT in the appropriate

directories, and have the KITT insert references to these files in the test database.
5. Create a file containing parameters for input to the KPGS.
6. Create the CDF skeleton table(s).
7. Create a command file to start the required mailboxes, define the appropriate logical

names, create the output key parameter file, and run the KPGS program.
8. Execute the command file.

2.4.1.3.1 Establishing the Test Environment on the CDHF
Once the user has obtained an account in the KPGS development and test environment, he/she must contact
the KITT and request to be made a valid user of the CDHF database. Requests can be submitted by telephone
at (301) 794-2318 or by E-mail address at ISTP1::GBLACKWELL.
Before using the CDHF account for development and testing, the following command should be executed
immediately after logging on for each session:

KPGS_DEV

CSC/SD-92/6028
560-7SUG/0290

2–5

This command defines the logical names and symbols required to set up the KPGS environment, to compile,
link, and run the KPGS programs, as well as to perform other development and test activities. It also
provides access to the KPGSIT version of the CDHF database.
The user should be in his/her KPGS_root directory before invoking this command. This command must be
entered each time the user logs into the CDHF.
Note: If a user logs into the CDHF and establishes the development environment and then wishes to run the
user interface to access the operational environment, he or she must log off and log in to the system again or
start a second session. Any attempt to use the user interface after establishing the development and test
environment via KPGS_DEV will result in conflicts of symbols and logical names between the test
environment and the production environment.
Special database tables have been set up for use by the KPGS development team for testing their software on
the CDHF. To access the test database tables, the user must execute the following command:

@KPGS_IT:[KPGSIT.SYSTEM]SET_USER_SYNONYMS
This command need only be executed once and should not be repeated on subsequent logins. The user is
notified if a database update requires this command to be reexecuted.
To establish the development and test environment, the KITT requires that the user employ the same directory
structure used in integrating his or her KPGS. This directory structure is created by typing the following
command:

KPGS_DIR
This command sets up the required directory structure for the user and creates an object library. The library
will be populated when the user runs the compile command file described in the following section. This
command file needs to be run only once unless the user decides to delete the directory structure and re-create
it.
The procedure creates the directory and the required subdirectories. The subdirectories created and the files
to be placed in them are described as follows:

[<root directory>.SRC] = KPGS source files
[<root directory>.DOC] = KPGS design document and other documentation
[<root directory>.EXE] = Working executable
[<root directory>.TSTDATA] = Test input data, skeleton tables, calibration files, and
parameter files
[<root directory>.COM] = Command files for compiling, linking, and running the KPGS
[<root directory>.kpgs_root.OBJ] = KPGS object files

where <root directory> is the directory from which the user wishes to set up the KPGS program.
The following sections provide information about the command files, namelist files, and other files required
to establish the KPGS development and test environment. The user should contact the KITT for automatic
tools that can be used to generate these files.

2.4.1.3.2 Compiling the KPGS
The user compiles the FORTRAN, C, and assembler source codes, moves the object codes into the object
library created when KPGS_DIR is run, and deletes the object codes using the following command file:

$ SET DEF SRC_DIR
$ FOR_COMPILE :==FOR
$ C_COMPILE :==CC
$ MACRO_COMPILE :==MACRO
$ ‘FOR_COMPILE’ <KPGS source module name>
$ ‘C_COMPILE’ <KPGS source module name>
$ ‘MACRO_COMPILE’ <KPGS source module name>
$ LIB/REPLACE OBJ_DIR:OBJ_LIB.OLB *.OBJ
$ DELETE *.OBJ;*
$ SET DEF COM_DIR

If recompiles are done using this command file, the user should delete or rename the existing object library
and create a new object library using the following command:

LIB/CREATE OBJ_DIR:OBJ_LIB.OLB

CSC/SD-92/6028
560-7SUG/0290

2–6

A sample copy of the compile command file can be found in the following directory:
KPGS_SUPPORT:SAMPLE_COMPILE_FILE.COM.

2.4.1.3.3 Linking With ICSS Support Routines, CDF Software, and Mathematics
Libraries

The KPGS applications may be linked by using Virtual Address Extension (VAX) libraries for the object
code or by simply using object modules. To link a FORTRAN application library with the ICSS support
routines, the user executes the following command file:

LNPROFOR EXE_DIR:<my_kpgs> -
OBJ_DIR:<my_lib>/LIB/INCLUDE=<my_obj>,-
ICSS_OBJ:SR/LIB,-
CDF$LIB:LIBCDF/LIB,-
NAGD$DIR:NAG$LIBRARY/LIB,-
ICSS_OBJ:DMS/LIB,-
ICSS_OBJ:UTL/LIB,-
MSG_PTR T

where
<my_kpgs> is the name of the executable to be produced by the link.
<my_lib> is the name of the KPGS object library (OBJ_DIR:OBJ_LIB).
<my_obj> is the name of the top-level application module.

The link command file should be entered exactly as shown above; it is important that no extra spaces be
added.
The name given to the executable image in the link command file (<my_kpgs>) should use the following
naming convention:

<mission long name>_<instrument short name>_KP_<program version>
(e.g., GEOTAIL_MFG_KP_V2_5)

If a library is not used for the KPGS applications, then the user replaces the second line of the procedure with
the object module name(s).
The Numerical Algorithms Group (NAG) Fortran Library is a comprehensive collection of Fortran 77
routines for the solution of numerical and statistical problems. The word “routine” is used to denote
subroutine or function. The library is divided into chapters, each devoted to a branch of numerical analysis or
statistics.
The last line of the procedure (MSG_PTR) may be followed by a “d” (separated from “MSG_PTR” by a
space) to include debug code in the executable and/or by an “m” to produce a link map.
To link applications written in C, the user replaces “LNPROFOR” in the first line of the procedure with
“LNPROC”.
To link applications with the NRT/ICSS support routines in the NRT environment, the user executes the
following command file:

LINK/EXE=EXE_DIR:<my_kpgs> -
OBJ_DIR:<my_lib>/LIB/INCLUDE=<my_obj>,-
IMSL$DIR:SFUN.OLB/LIB,- ! optional, include this library as needed
ICSS_OBJ:NRT_SR/LIB,-
ICSS_OBJ:SR/LIB,-
CDF$LIB:LIBCDF/LIB,-
NAGD$DIR:NAG$LIBRARY/LIB,-
ICSS_OBJ:DMS/LIB,-
ICSS_OBJ:UTL/LIB,-
MSG_PTR

where
<my_kpgs>, <my_lib>, and <my_obj> are as described above.

The LINK command in the first line of the procedure may be followed by /DEBUG to include debug code in
the executable. Samples of both link command files can be found in
KPGS_SUPPORT:SAMPLE_LINK_FILE.COM and KPGS_SUPPORT:SAMPLE_NRT_LINK_FILE.COM.

CSC/SD-92/6028
560-7SUG/0290

2–7

The International Mathematics and Statistics Library (IMSL) SFUN/LIBRARY is a collection of Fortran
subroutines and functions useful in research and statistical analysis. Each routine is designed and documented
to be used in research activities, as well as by technical specialists.

2.4.1.3.4 Supplying the KPGS Test Data Files
To test the KPGS, the appropriate data files must be placed in the proper directories and cataloged in the test
database. These data files may be any of the following:

• Simulated Instrument Data Set (SIDS) data file [These PI-supplied files are converted to
level-zero data files by the KITT; the level-zero data files are then cataloged by the
KITT. See Appendix B of the ISTP CDHF KPGS Integration Test Plan (Reference 3)].

• SIRIUS data files (GEOTAIL only)
• Calibration parameter files
• PI parameter files

The PI teams are responsible for placing the required input files in the proper directory for access by the
KITT. The KITT is responsible for cataloging these files after they are supplied and providing the level-zero
(generated from SIDS data), housekeeping, attitude, and orbit files required for testing.
To place all input files in the proper directory, the PI teams copy these files to the logical directory
“TST_DIR.” After all the files have been provided, the KITT should be notified by electronic mail. The
KITT specifies the time interval that will be used for testing.
After the KITT receives the notification, it inserts references to the input files in the database and provides
the additional required data files. When this is done, the PI team is notified by E-mail.

2.4.1.3.5 Creating the Input Parameter File
To test the key parameter generation program, a file containing parameters for input to the KPGS must be
created. This file identifies the input files and output files required by the key parameter generation program
and is distinct from the PI parameter file described in Section 2.2.3. A template of the file containing
parameters for input to the KPGS follows. A sample of this file can be found in
KPGS_SUPPORT:SAMPLE_PARAMETER_FILE.DAT.

MISSION_NAME = “name of mission”
INSTRUMENT_NAME = “short name of instrument”
TL_INPUT_FILE_P = “primary level-zero or SIRIUS input file”
TL_INPUT_FILE_S = “secondary level-zero or SIRIUS input file”
HK_INPUT_FILE_P = “primary housekeeping input file”
HK_INPUT_FILE_S = “secondary housekeeping input file”
ORB_INPUT_FILE_P = “primary orbit input file”
ORB_INPUT_FILE_S = “secondary orbit input file”
ATT_INPUT_FILE_P = “primary attitude input file”
ATT_INPUT_FILE_S = “secondary attitude input file”
KPGS_PROGRAM_NAME = “KPGS program name”
KPGS_PROG_VER = “KPGS program version”
KP_OUTPUT_FILE_01 = “KP output filename”

This file has a fixed format. Parameters must appear in the order shown and all must be present. Parameters
not applicable to the program are given NULL values (e.g., TL_INPUT_FILE_S = “” if no secondary level-
zero file is required). A sample file containing parameters for input to the KPGS follows:

MISSION_NAME = “GEOTAIL”
INSTRUMENT_NAME = “PWI”
TL_INPUT_FILE_P = “GEOTAIL_LZ:GE_LZ_PWI_19920731_V01.SFDU”
TL_INPUT_FILE_S = “”
HK_INPUT_FILE_P = “”
HK_INPUT_FILE_S = “”
ORB_INPUT_FILE_P = “GEOTAIL_ORB:GE_OR_PRE_19920731_V01.SFDU”
ORB_INPUT_FILE_S = “”
ATT_INPUT_FILE_P = “”
ATT_INPUT_FILE_S = “”

CSC/SD-92/6028
560-7SUG/0290

2–8

KPGS_PROGRAM_NAME = “GEOTAIL_PWI_KP”
KPGS_PROG_VER = “V1.0”
KP_OUTPUT_FILE_01 = “GEOTAIL_KP:GE_K0_PWI_19910930_V01”

The values for the KPGS_PROGRAM_NAME and KPGS_PROG_VER parameters must be the same as the
first two arguments passed to the ICSS_KPG_INIT support routine by the program (see Section 4.1).
Logical names are used for the directory specification and must be included as shown.

2.4.1.3.6 Creating the CDF Skeleton Table
By referring to the sample CDF skeleton tables in Appendix B and the CDF user’s guide (Reference 4), the
user may create a skeleton table that can be used to generate the instrument key parameter output file.
Additional help for creating the skeleton table is available from Ramona Kessel at user ID NCF::KESSEL
and the KITT at ISTP1:KPGSIT. Appendix A of Reference 4 provides a tutorial on creating the required
skeleton table.

2.4.1.3.7 Creating the KPGS Run Command File
The KPGS run command file is used for setting up and running the KPGS. The following is the format of this
file:

$define ICSS_INP_PARM <input parameter filename>
$@CDHF_DEV:[sdev.com]sim_def ! Start simulated mailboxes
$@CDHF_DEV:[sdev.com]sim_ops
$@CDHF_DEV:[sdev.com]sim_mh
$@CDHF_DEV:[sdev.com]sim_cat
$inquire/nopun creat_skel “Do you want to create CDFSKELETON? (Y/N):”
$if creat_skel .eqs. “Y” .or. creat_skel .eqs. “y”
$ then
$! Delete the old .cdf file if present
$ if f$search (<KP output filename>) .nes. “”
$ then
$ delete <KP output filename>;*
$ endif
$! Create the new cdf
$ cdfskeleton <skeleton filename> /CDFNAME=<KP output filename>
$ endif
$RUN KP_TOOLS:LOAD_QUEUE

<KPGS program name>
<KPGS program version>
<Level-zero logical filename>
<KP output filename>

$RUN <KPGS executable name>
$STOP <account>_1 !Stop simulated mailboxes
$STOP <account>_2
$STOP <account>_3

where
<input parameter filename> is the name (with path) of the input parameter file created in
Section 2.4.1.3.5.
<KP output filename> is the name of the key parameter file that will be created by the run.
This should be the same as the KP_OUTPUT_FILE_01 file specification in the input
parameter file (see Section 2.4.1.3.5).
<skeleton filename> is the name of the skeleton table created in Section 2.4.1.3.6.
<KPGS program name> is the name of the KPGS program. This should be the same as the
KPGS_PROGRAM_NAME parameter in the input parameter file (see Section 2.4.1.3.5).
<KPGS executable name> is the name of the KPGS executable created in
Section 2.4.1.3.3.

CSC/SD-92/6028
560-7SUG/0290

2–9

<KPGS program version> is the version of the KPGS program. This should be the same as
the KPGS_PROG_VER parameter in the input parameter file (see Section 2.4.1.3.5).
<Level-zero logical filename> is the name of the level-zero file being used as input for the
run.
<account> is the user name of the account under which the KPGS test will be run.
STOP assumes no other spawn processes are running under <account>.

Invocation of the command file executes the KPGS program using the indicated input/output files.
LOAD_QUEUE is a program that initializes the ICSS ORACLE database for a KPGS program test run. It
places entries in the data process queue, and removes entries of previous runs from the data process history
and data transfer queue tables.
The LOAD_QUEUE program requires four input items, each on a separate line. The proper invocation of this
program is as follows:

RUN KP_TOOLS:LOAD_QUEUE
<KPGS program name>
<KPGS program version>
<Level-zero logical filename>
<KP output filename>

<KPGS program name> and <KPGS program version> are the name and version of the KPGS program as
defined in the input parameter file. <Level-zero logical filename> is the logical name (no path or extension)
of the primary level-zero file that will be used as input for the run.
The following example is an invocation of the command that would initialize the data process queue for a test
run of version 1.0 of the GEOTAIL Energy Particle and Ion Composition (EPIC) KPGS program using the
level-zero file for September 21, 1992:

LOAD_QUEUE
GEOTAIL_EPI_KP
V1.0
GE_LZ_EPI_19920921_V01
GE_KP_EPI_19920921_V01

If this program is invoked with other than four parameters, an error message is returned and a help screen
describing the correct invocation is displayed.

2.4.1.3.8 CREATE_KPGS_TEST Utility

The CREATE_KPGS_TEST utility creates the files necessary to run a playback mode KPGS program. This
utility uses the CDHF database as the source for the information needed to create these files. It ensures that
all of the required data files exist and are cataloged, and that all of the required database entries for the
KPGS program have been made. If any discrepancies are noted during the running of this utility, they will be
reported to the user and the test environment will not be created.
This utility will create a command file to run the KPGS program and an input parameter file to pass the
names of input and output files to the KPGS program. The command file will be named

<Program Name>_RUN_YYMMDD.COM
where

<Program Name> is the name of the KPGS program, and YYMMDD is the date of the data
that is used for the test.

The input parameter file is named
<Program Name>_YYMMDD.DAT

Both of these files are created in the default directory. Note that the command file can be renamed, but that the
input parameter file, which is referenced by the command file, cannot be changed without also changing the
reference in the command file.
Running the KPGS program will create a user message file with the name

<Program Name>_YYMMDD.LOG
This file can be changed by editing the command file.
The CREATE_KPGS_TEST utility is designed to be used by both the KITT and the PIs. For this reason, it is
sensitive to the account in which it runs. The KITT usually runs KPGS programs with the ICSS system, while

CSC/SD-92/6028
560-7SUG/0290

2–10

the PIs use simulated mailboxes. If the CREATE_KPGS_ TEST utility is run in the KPGSIT account, it will
create a command file that does not use the simulated mailboxes for the message handler, cataloger, and
operator interface. If this utility is run in any other account, commands will be inserted into the command file
to run the simulated mailboxes.
To create a KPGS test environment, the following steps must be performed:

1. Set the default directory to the root directory for the KPGS program that is to be tested.
2. Define the KPGS logicals by typing

KPGS_DEV
3. Set the default directory to the [.COM] subdirectory by typing

SD COM_DIR
4. Run the CREATE_KPGS_TEST utility by typing

CREATE_KPGS_TEST
5. Respond to the prompts for program name and version with the identical entries that

have been made in the PROCESS PROGRAM Table of the database (see Section 3).
6. Respond to the prompt for test date by entering the date of the input data that is to be

used for the test.
7. The utility will now attempt to create the test environment. If the utility is successful in

creating the test environment, a message will be displayed describing the command that
will initiate the test. If for any reason the test environment cannot be established, a
message will be displayed describing the problem and providing suggestions for
resolving it.

2.4.2 KPGS, Calibration Data, and Parameter File Delivery
There are three methods for the delivery of KPGS and associated materials: electronic (the preferred
method), hard media (e.g., magnetic tape and hardcopy), or a combination of electronic delivery and hard
media (e.g., source code and test data delivered electronically and design documentation delivered on hard
media). If a magnetic tape is used to make a delivery, it must be a nine-track, 6250-bit-per-inch (bpi) tape.
VAX COPY or BACKUP format tapes are preferred. If the tape cannot be created as a VAX format tape, then
a nonlabeled, fixed-length record format tape is acceptable. Instructions for reading the tape should be
provided.
Electronic deliveries of the KPGS, calibration file, and/or PI parameter file are made from the directory
structure created by KPGS_DIR.
When the delivery directory created by KPGS_DIR has been populated with the delivery items, the PI
executes the delivery form (see Section 2.4.2.3) to initiate the delivery procedure. The delivery items are
copied from the PI’s delivery directory to a KPGS delivery holding area. The KITT is notified automatically
by E-mail when the delivery form is entered in the system. The KITT then verifies that the delivery is
complete and configures the delivery for integration test. Similarly, when they receive a delivery on hard
media, the KITT verifies it for completeness and then configures it for integration test.
Electronic deliveries can also be made without using the delivery form. Instruction for making an electronic
delivery without using the form can be accessed by entering DEL_PROC.

2.4.2.1 KPGS Delivery Items
Regardless of the means of delivery, each delivery of KPGS must consist of the following items:

• A list of items being delivered
• KPGS source code, CDF skeleton table, PI parameter file, and calibration file
• A working executable program
• Build instructions for the compilation and linking of the source code (including

command files used to build the KPGS program)
• Test data
• Test procedures and test results

CSC/SD-92/6028
560-7SUG/0290

2–11

Whenever a change is made in one or more units of the KPGS, the entire program is delivered to the CDHF,
not just the changed units. This simplifies configuration management (CM) of the KPGS on the CDHF and
removes a potential source of errors.
If a change in the KPGS results in a change in the design of the KPGS, the resources required by the KPGS,
or the key parameters generated, the KPGS design document must be updated and included with the delivery.

2.4.2.2 Calibration and PI Parameter Files Delivery Procedure
Deliveries of calibration and PI parameter files (if any) are treated independently of the source code
deliveries, unless the source code has changed as a result of the change in the calibration/PI parameter files.
Deliveries or updates to calibration or PI parameter file consists of the following:

• A list of items being delivered
• A new calibration and/or PI parameter file(s)
• Test data, when applicable
• Test procedures and test results

If a change in calibration or PI parameter files results in a change in the source code, a combined
source/calibration/parameter delivery is made. If a change in the calibration/PI parameter files results in a
change in the resources required by the KPGS, the KPGS design document must be updated and included with
the delivery.

2.4.2.3 The Delivery Form
The KITT tracks all the software components that compose the various test and operational baselines. All
new or revised KPGS programs and data must be delivered to the KITT. To facilitate software deliveries, an
online form and database are used (deliveries on hard media include hardcopy listings of the delivery
contents). Before a form is completed, all the associated files must be copied to the delivery subdirectory. In
addition, the special instructions should indicate the data file types (mission, instrument, and data type) that
are processed, used as input support files, and generated by a new or significantly revised KPGS program.
Upon completion of the form, the associated files are automatically delivered to the KITT. A copy of the
online delivery form is in Appendix D.

2.4.3 KPGS Problem Reporting
CCRs are the mechanism used by the Goddard Space Flight Center (GSFC) to track design changes and
problem reports. Any member of the development, test, and management team may submit a CCR. Each CCR
is analyzed to determine if a change is required and what type of change is necessary. The actual completed
changes, the test results, and final closure of each CCR are also tracked.

2.4.4 SQL*Forms Operating Instructions
This section describes the procedure for using the online KPGS delivery form (KDF) to make an electronic
delivery of the KPGS, calibration files, or PI parameter file.

2.4.4.1 Form Execution
The KDF is executed on the development database. After the operation database is created, the associated
tables may be transferred. A user who does not have a development database account must contact the
database administrator. To activate the KDF form from the Digital Command Language (DCL) prompt, the
user types the following:

DFC (activation from DEC Terminal)
DFCE (activation from PC)

2.4.4.2 Basic SQL*Forms Operations
SQL*Forms is a user interface product for the ORACLE database management system (DBMS). It allows
users to enter new information, delete information, query existing information, and update information. To
perform these operations, users must master some basic operations:

• Keypad Help—Keypad mappings have been defined for DEC VT100 and VT220
compatible terminals. Based on terminal type, the RUNFORM command will
automatically assign one of the two keypad mappings. At any point, a list of the keypad

CSC/SD-92/6028
560-7SUG/0290

2–12

mappings can be obtained by pressing the control key (Ctrl) and the letter “K” at the
same time. If pulldown menus are preferable to function keys, the user must learn the
MENU key to display the menu options. By using the return/enter key and the arrow
keys, users can complete all operations with the pulldown menus.

• Field Help—A help message will automatically appear on the message line as the
cursor enters each item. The help message will indicate the purpose of each item,
whether the LIST key (LOV) is enabled to display the legal values, whether a special
format is required, whether the field is mandatory (MAN), and whether the EDIT key
(EDT) displays a popup window to view the entire field.

• Basic Form Navigation—The NEXT FIELD and PREVIOUS FIELD keys allow
navigation between each item. The RIGHT and LEFT keys allow navigations within a
field item. The UP and DOWN keys allow navigation to the previous and next entries
(records). Some forms, such as KDF, have items grouped into blocks separated by a
solid line on the form. To navigate from one block to another, the user must press the
PREVIOUS BLOCK and NEXT BLOCK keys. Finally, many forms have special
function keys that allow navigation to and from other form pages and popup windows.
These special function keys are described at the bottom of the forms.

• Performing Queries—To retrieve all records, the user must press the EXECUTE
QUERY key. In most cases, however, it is preferable to specify query criteria first rather
than retrieve everything from the database. To specify query criteria, the user must press
the ENTER QUERY key, which activates the query mode, and enter values in the items
that should be used to restrict the query. A wildcard (%) can be used if the user cannot
remember an entire word. After the criteria are entered, the user must press the
EXECUTE QUERY key to retrieve the matching entries. The form will remain in query
mode until entries are successfully retrieved. To exit query mode, the user should press
the EXIT/CANCEL key. The ENTER QUERY message at the bottom of the screen
indicates that the form is in query mode.

• Performing Inserts—To perform an insert, the user must find an empty entry and fill in
the appropriate items. To create a blank entry, the user needs to press the INSERT
RECORD key. After completing an entry, the user must press the COMMIT key to save
the entry in the database.

• Performing Updates—To perform an update, the user must first perform a query to
retrieve the applicable entries. Once the entries are retrieved, the user can type in any
changes and save them to the database by using the COMMIT key.

• Performing Deletes—To perform a delete, the user must first perform a query to
retrieve the applicable entries. Once the entries are retrieved, the user can delete them
using the DELETE RECORD key. Although the record disappears immediately, the
deletion does not occur in the database until the COMMIT key is used. The CLEAR
FORM key can be used to undo a deletion before a commit. In many applications,
deletes are restricted.

• Performing Edits—For longer fields, the form often will display a truncated version of
the field. The EDIT key can be used to view the entire field. The help message for
truncated fields will indicate that edit is available with the EDT code. The edit function
is particularly useful for free-format text. Within an edit popup window, automatic word
wrapping is enabled. For advanced users, a wide variety of edit functions such as cut,
paste, copy, and search are available.

• Exiting a Form—To exit a form, the user must press the EXIT/CANCEL key. If in
query mode, the user must press the key twice. If some changes are not committed, a
warning message will be displayed to allow the user either to commit the changes or to
ignore them.

CSC/SD-92/6028
560-7SUG/0290

2–13

2.5 Key Parameter Reprocessing
Errors in the KPGS or in the calibration file may require key parameter processing to be temporarily
suspended and/or some key parameter data to be reprocessed. The ISTP CDHF user’s guide describes the
procedures for requesting the suspension of key parameter processing and for making key parameter
reprocessing requests.

CSC/SD-92/6028
560-7SUG/0290

3–1

SECTION 3—CODING STANDARDS

This section describes the coding standards to be used in the development of the KPGS. Two compilers are
supported on the CDHF for the KPGS: VAX FORTRAN and C. Each standard is described, along with the
provided extensions, in the sections that follow. In addition, all appropriate standards and conventions
discussed in Reference 1 should be adhered to.

3.1 CDHF FORTRAN Language Standards
VAX FORTRAN is an implementation of full language FORTRAN-77 conforming to American National
Standards Institute (ANSI) FORTRAN, ANSI X3.9-1978. The KPGS may make use of any of the available
VAX FORTRAN extensions.

3.2 CDHF C Language Standards
The VAX C language supported on the CDHF follows the ANSI C standard. The KPGS may make use of any
of the available VAX C extensions.

3.3 KPGS Program Structure
To ensure the proper management and tracking of products generated by the KPGS, each KPGS application
must conform to CDHF-defined rules concerning program structure. Specific variables and support routines
must be included in every KPGS, and naming conventions must be followed. Appendix A contains sample
KPGS program structures illustrating the conventions and requirements presented here.

3.3.1 Naming Conventions
The ICSS support routines are identifiable by their names. All CDHF support routines and declarations begin
with “ICSS_” to signify that they are supplied by the ICSS. All CDF routines begin with “CDF_”, and
database support routines begin with “DB_”. Consequently, the “ICSS_”, “CDF_”, and “DB_” prefixes are
reserved by ICSS and should not be used by the PI within the KPGS for any PI-supplied routines or
variables.
The naming conventions for the skeleton tables, calibration parameter files, and PI parameter files used on
the ISTP CDHF follow the standards of logical names for other files on the CDHF. However, the date
portion of the filenames has been omitted for these files, since the files are applicable over a range of dates.
Skeleton tables shall be named as follows:

<Short Mission Name>_K<KP File #>_<Instrument Name>_V<Version>.
SKELETON_TABLE

where
<Short Mission Name> is the two-character identifier for the applicable mission.
<KP File #> is a number between 0 and 9 identifying one of several K index value (KP)
files for the same mission and instrument. The first KP file is always file “0.”
<Instrument Name> is the three- or four-character name of the applicable instrument.
<Version> is two numeric digits indicating the particular version of the skeleton table.
The first version of a skeleton table is version “01.”

The following is an example of a valid filename for the first version of the skeleton table for the EPIC
instrument on the GEOTAIL Mission:

GE_K0_EPI_V01.SKELETON_TABLE
Calibration files shall be named as follows:

<Short Mission Name>_CD_<Instrument Name>_V<Version>.<Instrument
Component>

or
<Short Mission Name>_CD_<Instrument Name>_<Instrument Component without
C>_V<Version>.<Instrument Component>

where

CSC/SD-92/6028
560-7SUG/0290

3–2

<Short Mission Name>, <Instrument Name>, and <Version> are as described above.
<Instrument Component> is a four-character extension that differentiates between
different calibration files used for the same mission and instrument. This extension shall
begin with a C followed by three numeric digits, i.e., C001.

The following is an example of a valid filename for the first version of the only calibration file for the EPIC
instrument on the GEOTAIL Mission:

GE_CD_EPI_V01.C001
If more than one calibration file is needed, the instrument component number (three numeric digit, e.g., 001)
should be used as part of the filename. The following are examples of valid filenames for the first version of
two calibration files for the Comprehensive Plasma Composition (CPI) instrument on the GEOTAIL mission:

GE_CD_CPI_001_V01.C001
GE_CD_CPI_002_V01.C002

PI parameter files shall be named as follows:
<Short Mission Name>_PF_<Instrument Name>_V<Version>.DAT

where
<Short Mission Name>, <Instrument Name>, and <Version> are as described above.

The following is an example of a valid filename for the first version of the PI parameter file for the EPIC
instrument on the GEOTAIL Mission:

GE_PF_EPI_V01.DAT
Optionally, a date in the form of YYMMDD can be used as part of the name for calibration and PI parameter
files if these files are associated with a date (e.g., GE_PF_EPI_19950123_V01.DAT).

3.3.2 Required Definitions
KPGS applications require the following variable declarations. This is not a complete list of all declarations
but, rather, those declarations requiring initial values by the PI. Declarations are given in FORTRAN and C.
FORTRAN declarations:

CHAR*20 KPGS_NAME
CHAR*5 KPGS_VERSION
DATA KPGS_NAME/“name of the KPGS main program”/
DATA KPGS_VERSION/“version number of the KPGS”/
INTEGER CDF_ID(10) (used to store up to 10 unit numbers to be assigned to CDF

key parameter output files)
C declarations:

AUTO $DESCRIPTOR (KPGS_NAME, “name of the KPGS main program”);
AUTO $DESCRIPTOR (KPGS_VERSION, “version number of the KPGS”);
INT CDF_ID[10]; (used to store up to 10 unit numbers to be assigned to CDF key
parameter output files)

The KPGS program name contains up to 20 characters and follows the naming convention
Spacecraft designator + ‘_’ + Instrument designator + ‘_’ + ‘KP’

where
Spacecraft designator is a character code for the spacecraft (e.g., GEOTAIL, WIND, or
POLAR).
Instrument designator is a three- or four-character code for the instrument.
‘KP’ indicates that the program generates key parameters.

For example, GEOTAIL_EFD_KP denotes the name of the KPGS for the GEOTAIL Electric Field Detector
(EFD) instrument, and V1.0 in KPGS_VERSION denotes version 1 of the software.

3.3.3 Required Support Routines
All KPGS are required to call the following ICSS support routines:

ICSS_KPG_INIT ICSS_KPG_TERM

CSC/SD-92/6028
560-7SUG/0290

3–3

ICSS_KPG_INIT must be the first support routine called after the program declarations. If the returned status
code yields an error, the KPGS application must terminate processing. ICSS_KPG_INIT records the error
message in the ISTP CDHF system message log.
ICSS_KPG_TERM must be the last support routine called after key parameter processing completes
(whether processing completed successfully or not). If an error occurs during its execution,
ICSS_KPG_TERM records the error message in the ISTP CDHF system message log. Status is returned to
the KPGS application.
The following support routines are available to the KPGS for key parameter processing. (The names of these
routines are the same in both playback and NRT modes with the same argument list.)

ICSS_KPG_INIT ICSS_GEODETIC_TO_GCI
ICSS_KPG_TERM ICSS_SD_BLK_TYP
ICSS_OPEN_ATT ICSS_INDICES
ICSS_OPEN_HK ICSS_CNVRT_EPOCH_TO_PB5
ICSS_OPEN_LZ ICSS_TRANSF_TO_MTC
ICSS_OPEN_ORB ICSS_TRANSF_TO_MSPC
ICSS_OPEN_SD ICSS_GET_FILE
ICSS_RET_ATT ICSS_COMPUTE_CGMLT
ICSS_RET_HK ICSS_COMPUTE_EDMLT
ICSS_RET_LZ ICSS_OPEN_PO_SPINPH
ICSS_RET_ORB ICSS_RET_PO_SPINPH
ICSS_RET_SD64 ICSS_OPEN_DP_ATT
ICSS_RET_SD ICSS_RET_DP_ATT
ICSS_KPG_COMMENT ICSS_ACF_TO_GCI
ICSS_TRANSF_ORB ICSS_OPEN_SOHO_LZ
ICSS_TRANSF_ATT ICSS_RET_SOHO_PACKETS
ICSS_CNVRT_TO_EPOCH ICSS_OPEN_SOHO_HK
ICSS_GET_CD ICSS_RET_SOHO_HK
ICSS_GET_PF ICSS_OPEN_SOHO_ATT
ICSS_SPINPH_SIRIUS ICSS_RET_SOHO_ATT
ICSS_GET_REFERENCE_FILES ICSS_NRT_ACTIVE
ICSS_SPINPH_WIND_LZ ICSS_WRITE_3DP_KP
ICSS_PAYLOAD_TO_GSE ICSS_WRITE_MFI_KP
ICSS_CNVT_FROM_RP ICSS_WRITE_SWE_KP
ICSS_POS_OF_SUN ICSS_VAX_TO_IEEE
ICSS_VELOCITY_TRANS ICSS_UTC_TAI_OFFSET
ICSS_GCI_TO_GEODETIC ICSS_GSM_SM
ICSS_TILT_ANGLE ICSS_TSY
ICSS_POS_VEL_OF_CELESTIAL

Sections 4 and 5 contain detailed descriptions of these routines.

3.3.4 CDF Routines
The CDF software library consists of a set of routines for describing, storing, and randomly accessing data
files in a standard format. Because of the controlled nature of key parameter generation on the CDHF, only a
subset of the full CDF library may be used within the KPGS.
The following CDF routines are available for use in the KPGS:

CDF_attr_entry_inquire CDF_var_get
CDF_attr_get CDF_var_hyper_get
CDF_attr_inquire CDF_var_hyper_put
CDF_attr_num CDF_var_inquire
CDF_attr_put CDF_var_num
CDF_doc CDF_var_put
CDF_error Compute_EPOCH
CDF_inquire EPOCH_breakdown
CDF_lib

CSC/SD-92/6028
560-7SUG/0290

3–4

For more details on these functions, see Reference 4.

3.3.5 FORTRAN Logical Unit Numbers
The logical unit numbers 10 through 99 may be used to open scratch, user message, PI parameter, or
calibration files.

3.3.6 Required Include Files
The following include files must immediately follow the program declarations:
For FORTRAN:

CDF$INC:CDF.INC
ICSS_INC:ICSS_KP_FILL_VALUES.INC
ICSS_INC:ICSS_MESSAGES.INC
For C:

<descrip.h>
<cdf$inc:cdf.h>
<icss_inc:icss_kp_fill_values.h>
<icss_inc:icss_messages.h>

3.3.7 Required Error-Handling Procedures
All KPGS are required to check the status returned from each of the ICSS and CDF support routine calls and
to take appropriate actions when such status indicates an error. All ICSS support routines return the value
SS$_NORMAL when they are successful. Values other than SS$_NORMAL may indicate a warning,
information, or fatal condition, as indicated in Section 4. The KPGS program is required to terminate when a
fatal condition is indicated. The ICSS support routines will record the error messages in the ISTP CDHF
system message log. Appendix C contains a complete listing of error/status messages. Appendix A contains
descriptions of sample programs that illustrate the proper handling of codes. Proper status checking for CDF
routines is illustrated in Reference 4.
When the KPGS abnormally aborts its processing, it must terminate (after first calling ICSS_KPG_TERM),
using an EXIT statement, the format of which is as follows:
For FORTRAN:

Call EXIT(status)
For C:

EXIT(status);
where status is the returned value from the ICSS_KPG_TERM support routine.
Terminating the KPGS in this way, with a status other than SS$_NORMAL, signals the ICSS-supported exit
handler to perform an alternate exit sequence that does not catalog the key parameter file. The EXIT statement
should follow the call to the ICSS_KPG_TERM routine. The status argument whose value indicates the
condition causing the abnormal termination is passed to the ICSS_KPG_TERM routine and the status returned
from ICSS_KPG_TERM is passed to the ICSS-supported exit handler.

3.4 CDF Key Parameter File Conventions
The detailed definitions for the standard conventions related to the CDF key parameter files can be found in
the ISTP KPGS standards and conventions document (Reference 1).

CSC/SD-92/6028
560-7SUG/0290

4–1

SECTION 4—SUPPORT ROUTINE DESCRIPTIONS

This section contains the detailed descriptions of the ICSS-supplied routines for supporting key
parameter generation. Each support routine description includes input and output, sample calling
sequences in FORTRAN and in C, and error conditions. As noted previously, routines that begin
with ICSS_, CDF_, and DB_ are reserved. The KPGS developers should not use these prefixes
for any PI-supplied routines. The support routines are under configuration control and
consequently are not alterable by PIs or other CDHF users. The following list summarizes the
complete set of ICSS support routines:

Unit Name Description

ICSS_KPG_INIT Initialize KPGS routine environment
ICSS_KPG_TERM Terminate KPGS processing
ICSS_OPEN_ATT Open attitude data file(s)
ICSS_OPEN_HK Open housekeeping data file(s)
ICSS_OPEN_LZ Open level-zero data file(s)
ICSS_OPEN_ORB Open orbit data file(s)
ICSS_OPEN_SD Open SIRIUS data file(s) (GEOTAIL only)
ICSS_RET_ATT Return requested attitude data
ICSS_RET_HK Return requested housekeeping data
ICSS_RET_LZ Return requested level-zero data
ICSS_RET_ORB Return requested orbit data
ICSS_RET_SD64 Return a block of 64 minor frames from a SIRIUS

data file (GEOTAIL only)
ICSS_RET_SD Return requested SIRIUS data (GEOTAIL only)
ICSS_KPG_COMMENT Write a KPGS-supplied comment to SFDU header
ICSS_TRANSF_ORB Transform orbit coordinates
ICSS_TRANSF_ATT Transform attitude coordinates
ICSS_CNVRT_TO_EPOCH Convert LZ major frame time to CDF epoch

format
ICSS_GET_CD Retrieve physical filename of a calibration file
ICSS_GET_PF Retrieve physical filename of the PI parameter file
ICSS_SPINPH_SIRIUS Calculate the spin-phase angle using SIRIUS data

(GEOTAIL only)
ICSS_GET_REFERENCE_FILES Obtain reference filenames from database

[International Magnetosphere Physics (IMP)-8
only]

Unit Name Description

ICSS_SPINPH_WIND_LZ Return the spin-phase angle (WIND only)

ICSS_PAYLOAD_TO_GSE Transform nonspinning payload coordinates
ICSS_CNVT_FROM_RP Convert a vector from rotating payload to fixed

payload
ICSS_POS_OF_SUN Return Sun position and velocity vectors
ICSS_VELOCITY_TRANS Convert velocities from one coordinate system to

another
ICSS_GCI_TO_GEODETIC Convert an input Geocentric Celestial Inertial

CSC/SD-92/6028
560-7SUG/0290

4–2

(GCI) vector to geodetic longitude, latitude, and
height

ICSS_GEODETIC_TO_GCI Convert an input geodetic longitude, latitude, and
height to a vector in GCI coordinates

ICSS_SD_BLK_TYP Determine whether a block of SIRIUS data
contains a message block

ICSS_INDICES Return solar indices
ICSS_CNVRT_EPOCH_TO_PB5 Convert date/time in epoch format to PB5 format
ICSS_TRANSF_TO_MTC Transform orbit coordinates or any vectorized

quantity to modified topographic coordinate
(MTC) system

ICSS_TRANSF_TO_MSPC Transform orbit coordinates or any vectorized
quantity to modified spin plan coordinate (MSPC)
system

ICSS_GET_FILE Query the CDHF database for physical filename(s)
and associated span start/stop date(s)

ICSS_COMPUTE_CGMLT Compute the corrected geomagnetic local time
(CGMLT)

ICSS_COMPUTE_EDMLT Compute the eccentric-dipole magnetic local time
(EDMLT)

ICSS_OPEN_PO_SPINPH Open the POLAR spin-phase file(s) (POLAR only)
ICSS_RET_PO_SPINPH Return requested POLAR spin-phase data

(POLAR only)
ICSS_OPEN_DP_ATT Open despun platform attitude data file(s)

(POLAR only)
ICSS_RET_DP_ATT Return despun platform attitude data (POLAR

only)
ICSS_ACF_TO_GCI Convert attitude vector in attitude control reference

frame (ACF) to GCI reference frame (SOHO only)
Unit Name Description

ICSS_OPEN_SOHO_LZ Open SOHO level-zero data file(s) (SOHO only)
ICSS_RET_SOHO_PACKETS Return SOHO packet data (SOHO only)
ICSS_OPEN_SOHO_HK Open SOHO housekeeping data file(s) (SOHO

only)
ICSS_RET_SOHO_HK Return SOHO housekeeping data (SOHO only)
ICSS_OPEN_SOHO_ATT Open SOHO attitude data file(s) (SOHO only)
ICSS_RET_SOHO_ATT Return SOHO attitude data (SOHO only)
ICSS_UTC_TAI_OFFSET Determine offset between UTC and TAI files
ICSS_GSM_SM Converts the coordinate systems between

Geocentric Celestial Magnetospheric (GSM) and
Solar Magnetic (SM)

ICSS_TILT_ANGLE Calculates the tilt angle
ICSS_TSY Provides an ISTP interface to the Tsyganenko

models
ICSS_POS_VEL_OF_
CELESTIAL

Retrieves the position and velocity vectors of a
celestial body in GCI coordinate system

CSC/SD-92/6028
560-7SUG/0290

4–3

In addition, the following CDF routines are available for use by the KPGS for the generation of
key parameter output file(s); the detailed descriptions of the CDF routines are documented in
Reference 4.

Unit Name Description

CDF_attr_entry_inquire Inquire about a specific attribute entry

CDF_attr_get Read an attribute entry from a CDF

CDF_attr_inquire Inquire about a particular attribute

CDF_attr_num Retrieve attribute number associated with a particular
attribute

CDF_attr_put Put an attribute entry to a CDF

CDF_doc Retrieve documentation type information about a CDF

CDF_error Retrieve text associated with a particular error code

CDF_inquire Inquire about the basic characteristics of a CDF

CDF_lib Perform all possible operations on a CDF

CDF_var_get Read a single value from a variable

CDF_var_hyper_get Read multiple values from a variable

CDF_var_hyper_put Put multiple values to a variable

CDF_var_inquire Inquire about a particular variable or the size of the buffers
necessary to receive value(s)

CDF_var_num Retrieve variable number associated with a particular
variable

CDF_var_put Put a single value to a variable

Unit Name Description

Compute_EPOCH Transform Gregorian time values into epoch values

EPOCH_breakdown Convert an epoch value to Gregorian time

Appendix A contains descriptions of sample KPGS programs that illustrate the use of each of
these routines, and the creation and use of scratch files and the user message file.

4.1 ICSS_KPG_INIT

4.1.1 Purpose

ICSS_KPG_INIT is the first support routine called within the KPGS. It initializes the key
parameter files for key parameter processing.

4.1.2 Description

This routine verifies the key parameter input, opens the key parameter output files, and
initializes the SFDU header for key parameter processing. The ISTP standards and conventions
document (Reference 1) and the ISTP CDHF data format control document (Reference 5)
contain details on the SFDU header.

4.1.3 Interfaces
Input to ICSS_KPG_INIT from the KPGS:

KPGS_NAME The name of the KPGS application
KPGS_VERSION The version number of the KPGS

CSC/SD-92/6028
560-7SUG/0290

4–4

Output from ICSS_KPG_INIT to the KPGS:
CDF_ID CDF file IDs of key parameter output files (unit
numbers)
KP_INIT_STATUS The status, which indicates whether the program

initialization was successful
Output from ICSS_KPG_INIT to the message handler:

operations_message Message indicating status of the routine

4.1.4 Calling Sequence
For FORTRAN:

Call ICSS_KPG_INIT (KPGS_NAME, KPGS_VERSION, CDF_ID, KP_INIT_STATUS)
CHARACTER*20 KPGS_NAME !Program name of KPGS
CHARACTER*5 KPGS_VERSION !Version number of KPGS
INTEGER*4 CDF_ID(10) !CDF IDs of key parameter output files

(see Section 3.3.2)
INTEGER*4 KP_INIT_STATUS !Key parameter initialization status

For C:

ICSS_KPG_INIT (&KPGS_NAME, &KPGS_VERSION, &CDF_ID,
&KP_INIT_STATUS);

auto $DESCRIPTOR(KPGS_NAME, “GEOTAIL_EFD_KP”);
auto $DESCRIPTOR(KPGS_VERSION, “V1.0”);
int CDF_ID[10];
int KP_INIT_STATUS;

4.1.5 Error Conditions

The following errors may be recorded in the system message log by ICSS_KPG_INIT:

ICSS_INIT_FAIL Failure; unable to assign a mailbox
channel
ICSS_INIT_FAIL_PUT_MSG Failure to assign a mailbox channel; unable

to call ICSS_PUT_MSG
ICSS_KPGS_INFILE_CLOSE_ERR Error closing a file containing parameters

for input to the KPGS
ICSS_KPGS_INFILE_OPEN_ERR Error opening a file containing
parameters

for input to the KPGS
ICSS_KPGS_INFILE_READ_ERR Error reading from a file containing

parameters for input to the KPGS
ICSS_KPGS_INFILE_INV_REC Invalid records in a file containing

parameters for input to the KPGS
ICSS_KP_OUTFILE_OPEN_ERR Error opening the key parameter output
file

CSC/SD-92/6028
560-7SUG/0290

4–5

All errors returned from this support routine are fatal. The KPGS application must check the
return status immediately after the call to ICSS_KPG_INIT. If the status indicates an error, the
KPGS application must terminate processing.

4.2 ICSS_KPG_TERM

4.2.1 Purpose

ICSS_KPG_TERM is the last support routine called by the KPGS, just before application exit. It
closes the key parameter input and output files.

4.2.2 Description

ICSS_KPG_TERM is responsible for completing the SFDU header, closing all the key
parameter input files, closing the newly created key parameter output file(s), and cataloging the
new file(s) in the CDHF catalog.

4.2.3 Interfaces

Input to ICSS_KPG_TERM from the KPGS:

INPUT_STATUS Status sent from KPGS indicating if any errors were
encountered

prior to call; should be SS$_NORMAL when terminating
normally, and another value when aborting

Output from ICSS_KPG_TERM to the KPGS:
KP_TERM_STATUS The return status from ICSS_KPG_TERM

Output from ICSS_KPG_TERM to the message handler:
operations_message Message indicating status of termination

4.2.4 Calling Sequence

For FORTRAN:

Call ICSS_KPG_TERM (INPUT_STATUS, KP_TERM_STATUS)
INTEGER*4 INPUT_STATUS !Status sent in from KPGS
INTEGER*4 KP_TERM_STATUS !Termination status

For C:
ICSS_KPG_TERM (&INPUT_STATUS, &KP_TERM_STATUS);

int INPUT_STATUS;
int KP_TERM_STATUS;

4.2.5 Error Conditions

The following fatal error conditions may be recorded in the system message log by
ICSS_KPG_TERM:

ICSS_CATALOG_KP_FILE_ERROR Failure to catalog a key parameter file. This
is a fatal error and should be handled as
such by the program.

ICSS_DB_ERR Error connecting to database. The KPGS
can discontinue processing if the

program is
unable to do any other processing at this
time.

CSC/SD-92/6028
560-7SUG/0290

4–6

ICSS_DB_MISSING_ADI_NUM ADI number is not in the database for
the

file.
ICSS_INPUT_FILE_CLOSERR Input file cannot be closed.
ICSS_OUTPUT_FILE_CLOSERR Output file cannot be closed. The KPGS
can

discontinue processing if the program is
unable to do any other processing at this
time.

ICSS_SFDU_HDR_CLOSE_ERR SFDU header cannot be closed. An
error

message is sent to the message handler.
The

new key parameter file(s) is not
cataloged

and an error is returned to the KPGS.
The

KPGS can discontinue processing if the
program is unable to do any other

processing at this time.
ICSS_INV_START_TIME Valid epoch time could not be found in
the

first record of the key parameter CDF
file.
ICSS_INV_STOP_TIME Valid epoch time could not be found in
the

last record of the key parameter CDF
file.

4.3 ICSS_OPEN_ATT

4.3.1 Purpose

ICSS_OPEN_ATT opens the day of data and previous day’s attitude files.

4.3.2 Description

ICSS_OPEN_ATT opens both the day of data and the previous day’s attitude files, if specified.
It also reads the global attributes of the CDF attitude files from those two files.

4.3.3 Interfaces

Input to ICSS_OPEN_ATT from the attitude file:

ATT_HEADER The file label record for the attitude file

Output from ICSS_OPEN_ATT to the KPGS:

COMPLETION_STATUS The return status from the routine

4.3.4 Calling Sequence

For FORTRAN:

Call ICSS_OPEN_ATT (COMPLETION_STATUS)
INTEGER*4 COMPLETION_STATUS !Message number

CSC/SD-92/6028
560-7SUG/0290

4–7

For C:

ICSS_OPEN_ATT (&COMPLETION_STATUS);
int COMPLETION_STATUS; /*Message number*/

4.3.5 Error Conditions

The following errors may be recorded in the system message log by ICSS_OPEN_ATT:

ICSS_INV_TIME_PR_ATT Error obtaining file times from the header record
in

the primary attitude file
ICSS_INV_TIME_SC_ATT Error obtaining file times from the header record
in

the secondary attitude file
ICSS_NO_PR_ATT Primary attitude file does not exist
ICSS_OPEN_PR_ATT Error opening the primary attitude file
ICSS_OPEN_SC_ATT Error opening the secondary attitude file
ICSS_SC_AFTER_PR_ATT Invalid secondary attitude file, begins after the

primary file’s start time

All errors returned from this support routine are fatal. The KPGS application must check the
return status immediately after every support routine call. If the status indicates an error, the
KPGS application must terminate processing.

4.4 ICSS_OPEN_HK

4.4.1 Purpose

ICSS_OPEN_HK opens the day of data and previous day’s housekeeping files.

4.4.2 Description

ICSS_OPEN_HK opens both the day of data and the previous day’s housekeeping files, if
specified. It also reads the file label record from those two files.

4.4.3 Interfaces

Input to ICSS_OPEN_HK from the housekeeping file:

HK_HEADER The file label record for the housekeeping file
Output from ICSS_OPEN_HK to the KPGS:

COMPLETION_STATUS The return status from this routine

4.4.4 Calling Sequence

For FORTRAN:

Call ICSS_OPEN_HK (COMPLETION_STATUS)
INTEGER*4 COMPLETION_STATUS !Message number

For C:

ICSS_OPEN_HK (&COMPLETION_STATUS);
int COMPLETION_STATUS; /*Message number*/

CSC/SD-92/6028
560-7SUG/0290

4–8

4.4.5 Error Conditions

The following errors may be recorded in the system message log by ICSS_OPEN_HK:

ICSS_GETLUN_PR_HK Error obtaining a logical unit number for the primary
housekeeping file

ICSS_GETLUN_SC_HK Error obtaining a logical unit number for the secondary
housekeeping file

ICSS_GET_HK_REC_SIZE Error obtaining the data record size in the housekeeping
file

ICSS_NO_PR_HK Primary housekeeping file does not exist
ICSS_OPEN_PR_HK Error opening the primary housekeeping file
ICSS_OPEN_SC_HK Error opening the secondary housekeeping file
ICSS_READHDR_PR_HK Error reading the header record from the primary

housekeeping file
ICSS_READHDR_SC_HK Error reading the header record from the secondary

housekeeping file
ICSS_SC_AFTER_PR_HK Invalid secondary housekeeping file, begins after the

primary file’s start time

All errors returned from this support routine are fatal. The KPGS application must check the
return status immediately after every support routine call. If the status indicates an error, the
KPGS application must terminate processing.

4.5 ICSS_OPEN_LZ

4.5.1 Purpose

ICSS_OPEN_LZ opens the day of data and previous day’s level-zero files.

4.5.2 Description

ICSS_OPEN_LZ opens both the day of data and the previous day’s level-zero files, if specified.
It also reads the file label record from those two files.

4.5.3 Interfaces

Input to ICSS_OPEN_LZ from the level-zero file:

LZ_HEADER The file label record for the level-zero file

Output from ICSS_OPEN_LZ to the KPGS:

COMPLETION_STATUS The return status from this routine

4.5.4 Calling Sequence

For FORTRAN:

Call ICSS_OPEN_LZ (COMPLETION_STATUS)
INTEGER*4 COMPLETION_STATUS !Message number

For C:

ICSS_OPEN_LZ (&COMPLETION_STATUS);
int COMPLETION_STATUS; /*Message number*/

CSC/SD-92/6028
560-7SUG/0290

4–9

4.5.5 Error Conditions

The following errors may be recorded in the system message log by ICSS_OPEN_LZ:

ICSS_GETLUN_PR_LZ Error obtaining a logical unit number for the primary
level-zero file

ICSS_GETLUN_SC_LZ Error obtaining a logical unit number for the secondary
level-zero file

ICSS_GET_LZ_REC_SIZE Error obtaining the data record size in the level-zero file
ICSS_NO_PR_LZ Primary level-zero file does not exist
ICSS_OPEN_PR_LZ Error opening the primary level-zero file
ICSS_OPEN_SC_LZ Error opening the secondary level-zero file
ICSS_READHDR_PR_LZ Error reading the header record from the primary level-

zero file
ICSS_READHDR_SC_LZ Error reading the header record from the secondary
level-

zero file
ICSS_SC_AFTER_PR_LZ Invalid secondary level-zero file, begins after the
primary

file’s start time

All errors returned from this support routine are fatal. The KPGS application must check the
return status immediately after every support routine call. If the status indicates an error, the
KPGS application must terminate processing.

4.6 ICSS_OPEN_ORB

4.6.1 Purpose

ICSS_OPEN_ORB opens the day of data and previous day’s orbit files.

4.6.2 Description

ICSS_OPEN_ORB opens both the day of data and the previous day’s orbit files, if specified. It
also reads the global attributes of the CDF orbit files from those two files.

4.6.3 Interfaces

Input to ICSS_OPEN_ORB from the orbit file:

ORB_HEADER The file label record for the orbit file

Output from ICSS_OPEN_ORB to the KPGS:

COMPLETION_STATUS The return status from this routine

4.6.4 Calling Sequence

For FORTRAN:

Call ICSS_OPEN_ORB (COMPLETION_STATUS)
INTEGER*4 COMPLETION_STATUS !Message number

For C:

ICSS_OPEN_ORB (&COMPLETION_STATUS);
int COMPLETION_STATUS; /*Message number*/

CSC/SD-92/6028
560-7SUG/0290

4–10

4.6.5 Error Conditions

The following errors may be recorded in the system message log by ICSS_OPEN_ORB:

ICSS_INV_TIME_PR_ORB Error obtaining file times from the header record
in

the primary orbit file
ICSS_INV_TIME_SC_ORB Error obtaining file times from the header record
in

the secondary orbit file
ICSS_NO_PR_ORB Primary orbit file does not exist
ICSS_OPEN_PR_ORB Error opening the primary orbit file
ICSS_OPEN_SC_ORB Error opening the secondary orbit file
ICSS_SC_AFTER_PR_ORB Invalid secondary orbit file, begins after the

primary file’s start time

All errors returned from this support routine are fatal. The KPGS application must check the
return status immediately after every support routine call. If the status indicates an error, the
KPGS application must terminate processing.

4.7 ICSS_OPEN_SD (GEOTAIL Support Only)

4.7.1 Purpose

ICSS_OPEN_SD opens the SIRIUS data files for the day of data and the previous day of data.

4.7.2 Description

ICSS_OPEN_SD opens both the day of data and the previous day’s SIRIUS files, if specified. It
also reads the message data block from all the files. ICSS_OPEN_SD opens SIRIUS files for a
file group when there are multiple SIRIUS data files for a single day’s worth of data.

4.7.3 Interfaces

Input to ICSS_OPEN_SD from the SIRIUS file:

SD_BLOCK The message data block from the SIRIUS file

Output from ICSS_OPEN_SD to the KPGS:

START_YEAR The year of the first major frame in the SIRIUS
files

STOP_YEAR The year of the last major frame in the SIRIUS
files
COMPLETION_STATUS The return status from this routine

4.7.4 Calling Sequence
For FORTRAN:

Call ICSS_OPEN_SD (START_YEAR, STOP_YEAR, COMPLETION_STATUS)
INTEGER*4 START_YEAR !Year of first frame
INTEGER*4 STOP_YEAR !Year of last frame
INTEGER*4 COMPLETION_STATUS !Message number

For C:
ICSS_OPEN_SD (&START_YEAR, &STOP_YEAR, &COMPLETION_STATUS);

CSC/SD-92/6028
560-7SUG/0290

4–11

int START_YEAR; /*First frame year*/
int STOP_YEAR; /*Last frame year*/
int COMPLETION_STATUS; /*Message number*/

4.7.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_OPEN_SD:

ICSS_GET_SD_FRAMES Error getting the number of minor frames in the
SIRIUS file

ICSS_GETLUN_SD Error obtaining a logical unit number for the
SIRIUS file

ICSS_NO_PR_SD Primary SIRIUS files do not exist
ICSS_OPEN_FILE_SD Error opening the SIRIUS file
ICSS_READMSGDATA_SD Error reading the message data block from the

SIRIUS file
ICSS_SC_AFTER_PR_SD Secondary SIRIUS files have later time stamps
than

the primary SIRIUS files
All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.
Note: Because it is possible for the SIRIUS data to span a year boundary, the key parameter generation
program should monitor the date of each frame and determine when a year change has occurred.

4.8 ICSS_RET_ATT

4.8.1 Purpose
ICSS_RET_ATT extracts attitude data from the attitude files for spin-stabilized spacecraft.

4.8.2 Description
This routine locates and returns the attitude data that corresponds to a given request time. Linear interpolation
is used to estimate the attitude request if an attitude point does not exist for a specific request time.

4.8.3 Interfaces
Input to ICSS_RET_ATT from the KPGS:

ATT_VEC_REQ_DATE The day of year and time of day of the
requested

attitude data
ATT_REQ_COOR_SYS The requested coordinate system of the returned

attitude data
Output from ICSS_RET_ATT to the KPGS:

ATT_VECTOR The interpolated right ascension, declination, and
spin rate for the requested time

ATT_RET_STATUS The status of the attitude vector request

4.8.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_ATT (ATT_VEC_REQ_DATE, ATT_REQ_COOR_SYS, ATT_VECTOR,
ATT_RET_STATUS)

INTEGER*4 ATT_VEC_REQ_DATE(2) !(1) YYYYDDD
!(2) milliseconds of day

CHARACTER*3 ATT_REQ_COOR_SYS !GSE,GSM,GCI

CSC/SD-92/6028
560-7SUG/0290

4–12

REAL*4 ATT_VECTOR(3) !(1) Right ascension in radians
!(2) Declination in radians
!(3) Spin rate in rpm

INTEGER*4 ATT_RET_STATUS !Corresponds to message
For C:

ICSS_RET_ATT (&ATT_VEC_REQ_DATE, &ATT_REQ_COOR_SYS,
&ATT_VECTOR, &ATT_RET_STATUS);

int ATT_VEC_REQ_DATE[2]; /*(0) YYYYDDD
 (1) milliseconds*/

auto $DESCRIPTOR(ATT_REQ_COOR_SYS, “GSE”);
/*GSE,GSM,GCI*/

float ATT_VECTOR[3]; /*Right ascension, declination,
spin

 rate*/
int ATT_RET_STATUS; /*Corresponds to message*/

4.8.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_TIME_OUTRANGE Requested time out of range of files
The following errors may be recorded in the system message log by ICSS_RET_ATT:

ICSS_ERR_READ_CDF Error reading the attitude CDF files
ICSS_CDF_INQ Error on CDF inquire
ICSS_ATT_FILE_INV Opened attitude files do not meet attitude data request
ICSS_COOR_SYS_INV Invalid coordinate system request

All errors returned from this support routine, except ICSS_TIME_OUTRANGE, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates a
fatal error, the KPGS application must terminate processing.

4.9 ICSS_RET_HK

4.9.1 Purpose
ICSS_RET_HK extracts housekeeping data records from the housekeeping files.

4.9.2 Description
This support routine returns the housekeeping data records. The calling routine indicates whether the request
is made by offset, by time, or in sequence. If the request is by offset, the record returned is the record with a
start time closest to the start time of the last record read plus the millisecond offset. The offset may be a
positive or negative number. If the request is by time, the record returned is the record that occurred closest
to the given millisecond time. The time may be a positive or negative number. Negative numbers indicate
times within the previous day’s file. If the request is in sequence, the record returned is the next record
sequentially within the file. If the first call to ICSS_RET_HK is in sequence, the first data record of the
primary file is returned. If the first call is by offset, the time is calculated using the start time of the first data
record in the primary file.
Only requests in sequence allow detection of gaps in the file. If a gap occurs, an informational status is
returned along with the number of missing major frames.

4.9.3 Interfaces
Input to ICSS_RET_HK from the KPGS:

HK_REQ_TYPE A flag indicating whether the housekeeping record
request

is being made by offset, by time, or in sequence
HK_REC_REQ The housekeeping record request. If HK_REQ_TYPE

indicates that request is by time, this variable contains

CSC/SD-92/6028
560-7SUG/0290

4–13

an
elapsed-millisecond-of-day time. A negative number
indicates a request for data from the previous day’s file;
i.e., -350000 requests the record at 86400000-350000,

or
86050000. If HK_REQ_TYPE indicates that the record

is
by offset, HK_REC_REQ contains the millisecond

offset
(positive or negative) from the last data record read.

This
field is ignored if the request is in sequence.

Output from ICSS_RET_HK to the KPGS:
HK_RECORD The requested housekeeping record
HK_RET_STAT The return status from ICSS_RET_HK
MISSING_FRAMES This output contains the number of major frames
missing

whenever a gap occurs. This number is always zero
unless

the request (HK_REQ_TYPE) is in sequence and a gap
exists.

4.9.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_HK (HK_REQ_TYPE, HK_REC_REQ, HK_RECORD, HK_RET_STAT,
MISSING_FRAMES)

INTEGER*4 HK_REQ_TYPE !0 = In sequence
!1 = By offset
!2 = By time

INTEGER*4 HK_REC_REQ !Millisecond time
INTEGER*4 HK_RECORD (REC_SIZE) !Housekeeping data record; REC_SIZE

!should be replaced with the number
!of words in the instrument data record

INTEGER*4 HK_RET_STAT !Message number
INTEGER*4 MISSING_FRAMES !Number of frames lost in gap

For C:
ICSS_RET_HK (&HK_REQ_TYPE, &HK_REC_REQ, &HK_RECORD,

&HK_RET_STAT, &MISSING_FRAMES);
int HK_REQ_TYPE; /*0 = In sequence*/

/*1 = By offset*/
/*2 = By time*/

int HK_REC_REQ; /*Millisecond time*/
int HK_RECORD[REC_SIZE] /*Housekeeping data record; REC_SIZE

 should be replaced with the maximum
 number of words in the instrument

data
 record*/

int HK_RET_STAT; /*Message number*/
int MISSING_FRAMES; /*Number of frames lost in gap*/

4.9.5 Error Conditions
The following warning condition may be detected by this routine:

CSC/SD-92/6028
560-7SUG/0290

4–14

ICSS_EOF_PR_HK End of file reached reading the primary housekeeping
file

The following informational message may be recorded in the system message log:
ICSS_GAP_IN_FILE A gap has occurred since the last major frame read

The following fatal errors may be detected by this routine:
ICSS_INV_HK_REQTYPE Invalid housekeeping request type; request must be by

offset, by time, or in sequence
ICSS_INV_HK_REQTIME Invalid requested time; the time is not in the range of
the

housekeeping files
ICSS_READ_PR_HK Error reading the primary housekeeping file data record
ICSS_READ_SC_HK Error reading the secondary housekeeping file data record

If the ICSS_RET_HK returns an ICSS_GAP_IN_FILE, the record returned is the first housekeeping record
following the data gap. The program should check the MISSING_FRAMES parameter for the number of
missing frames. If this condition is unacceptable, the KPGS application should treat this condition as a fatal
error.
The KPGS application must check the return status immediately after every support routine call. If the status
indicates a fatal error, the KPGS application must terminate processing.

4.10 ICSS_RET_LZ

4.10.1 Purpose
ICSS_RET_LZ extracts level-zero data records from the level-zero files.

4.10.2 Description
This support routine returns the level-zero data records. The calling routine indicates whether the request is
made by offset, by time, or in sequence. If the request is by offset, the record returned is the record with a
start time closest to the start time of the last record read plus the millisecond offset. The offset may be a
positive or negative number. If the request is by time, the record returned is the record that occurred closest
to the given millisecond time. The time may be a positive or negative number. Negative numbers indicate
times within the previous day’s file. If the request is in sequence, the record returned is the next record
sequentially within the file. If the first call to ICSS_RET_LZ is in sequence, the first data record of the
primary file is returned. If the first call is by offset, the time is calculated using the start time of the first data
record in the primary file.
Only requests in sequence allow detection of gaps in the file. If a gap occurs, an informational status is
returned along with the number of missing major frames.

4.10.3 Interfaces
Input to ICSS_RET_LZ from the KPGS:

LVLZ_REQ_TYPE A flag indicating if the level-zero data record request is
being made by offset, by time, or in sequence

LVLZ_REC_REQ The level-zero data record request. If
LVLZ_REQ_TYPE

indicates that request is by time, this variable contains
an

elapsed-millisecond-of-day time. A negative number
indicates a request for data from the previous day’s file;
i.e., -350000 requests the record 86400000-350000, or
86050000. If LVLZ_REQ_TYPE indicates that the

record
is by offset, LVLZ_REC_REQ contains the millisecond
offset (positive or negative) from the last data record

CSC/SD-92/6028
560-7SUG/0290

4–15

read.
This field is ignored if the request is in sequence.

Output from ICSS_RET_LZ to the KPGS:
LVLZ_RECORD The requested level-zero data record
LVL_RET_STAT The return status from ICSS_RET_LZ
MISSING_FRAMES This output contains the number of major frames
missing

whenever a gap occurs. This number is always zero
unless

the (LVLZ_REQ_TYPE) is in sequence and a gap
exists.

4.10.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_LZ (LVLZ_REQ_TYPE, LVLZ_REC_REQ, LVLZ_RECORD,
LVLZ_RET_STAT, MISSING_FRAMES)

INTEGER*4 LVLZ_REQ_TYPE !0 = In sequence
!1 = By offset
!2 = By time

INTEGER*4 LVLZ_REC_REQ !Millisecond time
INTEGER*4 LVLZ_RECORD(LZ_REC_SIZE) !Level-zero data record;

!LZ_REC_SIZE should be
replaced

!by the maximum number of
words

!in the instrument data record
INTEGER*4 LVLZ_RET_STAT !Message number
INTEGER*4 MISSING_FRAMES !Number of frames lost in gap

For C:
ICSS_RET_LZ (&LVLZ_REQ_TYPE, &LVLZ_REC_REQ, &LVLZ_RECORD,

&LVLZ_RET_STAT, &MISSING_FRAMES);
int LVLZ_REQ_TYPE; /*0 = In sequence

 1 = By offset
 2 = By time*/

int LVLZ_REC_REQ; /*Millisecond time*/
int LVLZ_RECORD[LZ_REC_SIZE]; /*Level-zero data record;

 LZ_REC_SIZE should be
replaced

 by the maximum number of
words

 in the instrument data
record*/
int LVLZ_RET_STAT; /*Message number*/
int MISSING_FRAMES; /*Number of frames lost in
gap*/

4.10.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_EOF_PR_LZ End of file reached reading the primary level-zero file
The following informational message may be recorded in the system message log:

ICSS_GAP_IN_FILE A gap occurred since the last major frame read
The following fatal errors may be detected by this routine:

CSC/SD-92/6028
560-7SUG/0290

4–16

ICSS_INV_LZ_REQTYPE Invalid level-zero request type; request must be by
offset,

by time, or in sequence
ICSS_INV_LZ_REQTIME Invalid requested time; the time is not in the range of
the

level-zero files
ICSS_READ_PR_LZ Error reading the primary level-zero file data record
ICSS_READ_SC_LZ Error reading the secondary level-zero file data record

If the ICSS_RET_LZ returns an ICSS_GAP_IN_FILE, the record returned is the first level-zero data record
following the data gap. The program should check the MISSING_FRAMES parameter for the number of
missing frames. If this condition is unacceptable, the KPGS application should treat this condition as a fatal
error.
The KPGS application must check the return status immediately after every support routine call. If the status
indicates a fatal error, the KPGS application must terminate processing.

4.11 ICSS_RET_ORB

4.11.1 Purpose
ICSS_RET_ORB extracts orbit data from the orbit files.

4.11.2 Description
This routine locates and returns the orbit vector that corresponds to a given request time. Cubic-spline
interpolation is used to estimate the orbit point if an orbit point does not exist for a specific request time.

4.11.3 Interfaces
Input to ICSS_RET_ORB from the KPGS:

ORB_VEC_REQ_DATE The day of year and time of day of the requested orbit
vector

ORB_REQ_COOR_SYS The requested coordinate system of the returned orbit
vector

Output from ICSS_RET_ORB to the KPGS:
ORB_POS_VEC The orbit position vector that corresponds to the request

time
ORB_VEL_VEC The orbit velocity vector that corresponds to the request

time
ORB_RET_STATUS The status of the orbit vector request

4.11.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_ORB (ORB_VEC_REQ_DATE, ORB_REQ_COOR_SYS,
ORB_POS_VEC, ORB_VEL_VEC, ORB_RET_STATUS)

INTEGER*4 ORB_VEC_REQ_DATE(2) !(1) YYYYDDD
!(2) milliseconds of day

CHARACTER*3 ORB_REQ_COOR_SYS !GSE,GSM,GCI
REAL*8 ORB_POS_VEC(3) !Position vector (x,y,z) (km)
REAL*8 ORB_VEL_VEC(3) !Velocity vector (dx,dy,dz)
(km/sec)
INTEGER*4 ORB_RET_STATUS !Corresponds to message

For C:
ICSS_RET_ORB (&ORB_VEC_REQ_DATE, &ORB_REQ_COOR_SYS,

&ORB_POS_VEC, &ORB_VEL_VEC, &ORB_RET_STATUS);
int ORB_VEC_REQ_DATE[2]; /*(0) YYYYDDD

 (1) milliseconds of day*/

CSC/SD-92/6028
560-7SUG/0290

4–17

auto $DESCRIPTOR(ORB_REQ_COOR_SYS, “GSE”);
/*GSE,GSM,GCI*/

double ORB_POS_VEC[3];
double ORB_VEL_VEC[3];
int ORB_RET_STATUS;

4.11.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_TIME_OUTRANGE Requested time out of range of files
The following errors may be recorded in the system message log by ICSS_RET_ORB:

ICSS_ERR_READ_CDF Error reading orbit CDF files
ICSS_CDF_INQ Error from CDF inquiry
ICSS_ORB_FILE_INV Opened orbit files do not meet orbit data request
ICSS_COOR_SYS_INV Invalid coordinate system request

All errors returned from this support routine, except ICSS_TIME_OUTRANGE, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates an
error, the KPGS application must terminate processing.

4.12 ICSS_RET_SD64 (GEOTAIL Support Only)

4.12.1 Purpose
ICSS_RET_SD64 returns a block of 64 minor frames from the SIRIUS files.

4.12.2 Description
This support routine returns SIRIUS minor frames in a data block. A maximum of 64 frames are returned. The
last block in a SIRIUS file may contain less than 64 minor frames. A user may request a block of minor
frames offset from the last minor frame returned. Only forward offsets are allowed, i.e., no backward time
jumps. To obtain the next contiguous block of minor frames, the user requests a block with an offset of 1.
Only the primary SIRIUS file is used.
The SIRIUS blocks are returned in International Business Machines, Inc. (IBM) format, i.e., extended binary-
coded decimal interchange code (EBCDIC) and IBM integers. Only minor frames are returned; the message
data block and the control block are never returned.

4.12.3 Interfaces
Input to ICSS_RET_SD64 from the KPGS:

MINOR_FRAME_OFFSET
The offset instructs the routine to skip a number of minor frames ahead. Usually,
this number is 1 to return the next contiguous block of 64 minor frames. Note that
this number is not the minor frame number within a SIRIUS block. If the last minor
frame returned on the previous call were 50 (in the data block), an offset of 51
would return the 101st minor frame within the data block. The offset may be any
positive number; it may not be 0 or negative.

Output from ICSS_RET_SD64 to the KPGS:
SD_BLOCK A block of 64 contiguous minor frames
MINOR_FRAMES_RET

The number of minor frames returned within the SD_BLOCK. Usually this number
is 64; however, the last block of minor frames within the file may contain fewer than
64 minor frames.

SD64_RET_STAT Status returned from the routine

CSC/SD-92/6028
560-7SUG/0290

4–18

4.12.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_SD64 (MINOR_FRAMES_OFFSET, SD_BLOCK,
MINOR_FRAMES_RET, SD64_RET_STAT)

INTEGER*4 MINOR_FRAMES_OFFSET !Greater than 0, usually = 1
BYTE SD_BLOCK(9216) !SIRIUS data block
INTEGER*4 MINOR_FRAMES_RET !Number of minor frames
returned
INTEGER*4 SD64_RET_STAT !Message number

For C:
ICSS_RET_SD64 (&MINOR_FRAME_OFFSET, &SD_BLOCK,

&MINOR_FRAMES_RET, &SD64_RET_STAT);
int MINOR_FRAMES_OFFSET; /*Greater than 0, usually = 1*/
int SD_BLOCK[2304]; /*SIRIUS data block*/
int MINOR_FRAMES_RET; /*Number of minor frames

 returned*/
int SD64_RET_STAT; /*Message number*/

4.12.5 Error Conditions

The following warning condition may be detected by this routine:

ICSS_EOF_SD End of file reached reading the last primary SIRIUS file

The following fatal error may be detected by this routine:

ICSS_INV_SD_OFF Invalid SIRIUS minor frame offset specified (must be
>0)

CSC/SD-92/6028
560-7SUG/0290

4–19

The KPGS application must check the return status immediately after every support routine call.
If the status indicates a fatal error, the KPGS application must terminate processing.

4.13 ICSS_RET_SD (GEOTAIL Support Only)

4.13.1 Purpose

ICSS_RET_SD returns a data block from the SIRIUS files (160 minor frames).

4.13.2 Description

This support routine returns SIRIUS data blocks from the SIRIUS data files. The calling routine
indicates whether the request is made by offset, by time, or in sequence. If the request is by
offset, the record returned is the record with a start time closest to the start time of the last record
read plus the millisecond offset. The offset may be a positive or negative number. If the request
is by time, the record returned is the record that occurred closest to the given millisecond time.
The time may be a positive or negative number. Negative numbers indicate times within the
previous day’s files. The returned data block has a time stamp equal to or before the requested
time. If the request is in sequence, the record returned is the next record sequentially within the
file. When the routine gets to the end of a SIRIUS file, it advances to the next file in the
sequence. If the first call is by offset, the time is calculated using the start time of the message
data block in the first primary file. The message data block from a SIRIUS file is returned
whenever a request is made by time and the data for the requested time falls within the first
record of the file, or when the request is made by sequence and the next record is the first
record. The return of a message data block is indicated by a warning status returned to the caller.
The control block of a SIRIUS file is never returned.
The SIRIUS data blocks are returned in IBM format, i.e., EBCDIC and IBM integers.

4.13.3 Interfaces
Input to ICSS_RET_SD from the KPGS:

SD_REQ_TYPE A flag indicating if the SIRIUS data block request is being made
by offset, by time, or in sequence

SD_REC_REQ The SIRIUS data block request. If SD_REQ_TYPE indicates that
request is by time, this variable contains a millisecond time. A
negative number indicates a request for data from the previous
day’s files; i.e., -350000 requests the block at 86400000-350000

or
86050000. SD_REQ_TYPE indicates that the record is by

offset,
SD_REC_REQ contains the millisecond offset (positive or
negative) from the last data block read. This field is ignored if

the
request is in sequence.

Output from ICSS_RET_SD to the KPGS:
SD_BLOCK The requested SIRIUS data block
SD_RET_STAT The return status from ICSS_RET_SD

4.13.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_SD (SD_REQ_TYPE, SD_REC_REQ, SD_BLOCK, SD_RET_STAT)
INTEGER*4 SD_REQ_TYPE !0 = In sequence

!1 = By offset

CSC/SD-92/6028
560-7SUG/0290

4–20

!2 = By time
INTEGER*4 SD_REC_REQ !Millisecond time
BYTE SD_BLOCK(23040) !SIRIUS data block
INTEGER*4 SD_RET_STAT !Message number

For C:
ICSS_RET_SD (&SD_REQ_TYPE, &SD_REC_REQ, &SD_BLOCK, &SD_RET_STAT);

int SD_REQ_TYPE; /*0 = In sequence
 1 = By offset
 2 = By time*/

int SD_REC_REQ; /*Millisecond time*/
int SD_BLOCK[5760]; /*SIRIUS data block*/
int SD_RET_STAT; /*Message number*/

4.13.5 Error Conditions
The following warning conditions may be detected by this routine:

ICSS_EOF_SD End of file reached reading the last primary SIRIUS
file

ICSS_MSG_BLK_RET_SD The data block returned contains a SIRIUS file
message data block

The following fatal errors may be detected by this routine:
ICSS_INV_SD_REQTYPE Invalid SIRIUS requested type; request must be
by

offset, by time, or in sequence
ICSS_INV_SD_REQTIME Invalid SIRIUS requested time; the time is not
in

the range of the SIRIUS files
ICSS_READ_SD Error reading the SIRIUS file
ICSS_SD_CBLK_ERR Error in the control block from the file

All errors returned from this support routine, except ICSS_MSG_BLK_RET_SD and ICSS_EOF_SD, are
fatal. The KPGS application must check the return status immediately after every support routine call. If the
status indicates a fatal error, the KPGS application must terminate processing.

4.14 ICSS_KPG_COMMENT

4.14.1 Purpose

ICSS_KPG_COMMENT writes a PI-supplied comment to the SFDU header associated with the
key parameter output files.

4.14.2 Description
ICSS_KPG_COMMENT writes a PI-supplied comment to the SFDU header associated with the key
parameter output files. This routine can be called multiple times as desired.

Note: The maximum number of bytes for KP_COMMENT is 240. Also, because the SFDU
header should not contain null characters, it is important to initialize the KP_COMMENT buffer
to blanks prior to writing any comments to it.

4.14.3 Interfaces

Input to ICSS_KPG_COMMENT from the KPGS:

KP_COMMENT The comment to be written to the SFDU header
(maximum

length is 240 bytes; 80 bytes are recommended)

CSC/SD-92/6028
560-7SUG/0290

4–21

Output from ICSS_KPG_COMMENT to the KPGS:
COMMENT_STATUS The status indicating whether the comment was

successfully written to the SFDU header or whether
there

was an error
Output from the ICSS_KPG_COMMENT to the SFDU:

KP_COMMENT The PI-supplied comment

4.14.4 Calling Sequence
For FORTRAN:

Call ICSS_KPG_COMMENT (KP_COMMENT, COMMENT_STATUS)
CHARACTER*240 KP_COMMENT !PI-supplied comment
INTEGER*4 COMMENT_STATUS !Message number

For C:
ICSS_KPG_COMMENT (&KP_DESC, &COMMENT_STATUS);
char KP_COMMENT[240]={“THIS IS A COMMENT”};

/*PI-supplied
comment*/
auto $DESCRIPTOR (KP_DESC, KP_COMMENT);
int COMMENT_STATUS; /*Message number*/

4.14.5 Error Conditions

The following warning message may be recorded in the system message log:

ICSS_SFDU_BUF_FULL SFDU buffer is full; no comment was written

4.15 ICSS_TRANSF_ORB

4.15.1 Purpose

ICSS_TRANSF_ORB transforms orbit coordinates or any vectorized quantity.

4.15.2 Description

This routine transforms orbit position data or any vectorized quantity to and from one of the
following coordinate systems:

• Geocentric Solar Ecliptic (GSE)
• Geocentric Solar Magnetospheric (GSM)
• Geocentric Celestial Inertial (GCI)
• Geographic (GEO)

The data and the desired coordinate transformation code are passed to the routine from the
KPGS, and the transformed orbit (or vector) data are returned. Any errors in performing the
transformation are reported to the KPGS in the return status.
Note that the KPGS programs that use the ICSS_TRANSF_ORB routine must be linked with the NAG
double-precision math library. (See Section 2.4.1.3.3.)

4.15.3 Interfaces
Input to ICSS_TRANSF_ORB from the KPGS:

ORB_SRC_SYS The current coordinate system of the vector to be
transformed

ORB_TARGET_SYS The requested coordinate system for the transformed

CSC/SD-92/6028
560-7SUG/0290

4–22

orbit
vector

ORB_POS Orbit position or other vector to be transformed
ORB_POS_TIME Time of orbit vector to be transformed

Output from ICSS_TRANSF_ORB to the KPGS:

TRANS_ORB_POS The transformed orbit or other vector
ROTATION_MATRIX The transformation rotation matrix
TRANS_ORB_STAT The status of the coordinate transformation

The relationship between the nine-element single-dimension array returned
(ROTATION_MATRIX) and the 3-by-3 two-dimensional transformation rotation matrix is as
follows:

ROTATION_MATRIX(1) = Position (1,1) [row, column]
ROTATION_MATRIX(2) = Position (2,1)
ROTATION_MATRIX(3) = Position (3,1)
ROTATION_MATRIX(4) = Position (1,2)
ROTATION_MATRIX(5) = Position (2,2)
ROTATION_MATRIX(6) = Position (3,2)
ROTATION_MATRIX(7) = Position (1,3)
ROTATION_MATRIX(8) = Position (2,3)
ROTATION_MATRIX(9) = Position (3,3)

4.15.4 Calling Sequence

For FORTRAN:

Call ICSS_TRANSF_ORB (ORB_SRC_SYS, ORB_TARGET_SYS, ORB_POS,
ORB_POS_TIME, TRANS_ORB_POS, ROTATION_MATRIX,
TRANS_ORB_STAT)

CHARACTER*3 ORB_SRC_SYS !GSE, GSM, GCI
CHARACTER*3 ORB_TARGET_SYS !GSE, GSM, GCI, GEO
REAL*8 ORB_POS(3) !Source position vector (x,y,z)
INTEGER*4 ORB_POS_TIME(2) !(1) YYYYDDD

!(2) milliseconds of day
REAL*8 TRANS_ORB_POS(3) !Transformed position vector (x,y,z)
REAL*8 ROTATION_MATRIX(9) !The transformation rotation
matrix
INTEGER*4 TRANS_ORB_STAT !Corresponds to message

Note: From FORTRAN, ICSS_TRANSF_ORB may be called using a 3-by-3 array for the
rotation matrix.
For C:

ICSS_TRANSF_ORB (&ORB_SRC_SYS, &ORB_TARGET_SYS, &ORB_POS,
&ORB_POS_TIME, &TRANS_ORB_POS, &ROTATION_MATRIX,
&TRANS_ORB_STAT);

auto $DESCRIPTOR(ORB_SRC_SYS, “GSE”); /*GSE, GSM,
GCI*/
auto $DESCRIPTOR(ORB_TARGET_SYS, “GSE”); /*GSE, GSM,
GCI,

 GEO*/
double ORB_POS[3]; /*Position
vector*/
int ORB_POS_TIME[2]; /*(0)
YYYYDDD*/

CSC/SD-92/6028
560-7SUG/0290

4–23

/*(1)
milliseconds of

 day*/
double TRANS_ORB_POS[3]; /*Transformed

 position
vector

 (x,y,z)*/
double ROTATION_MATRIX[9]; /*Rotation
matrix*/
int TRANS_ORB_STAT; /*Corresponds to

 message*/

4.15.5 Error Conditions

The following fatal errors may be returned to the caller:

ICSS_INV_SRC_SYS Invalid source coordinate system
ICSS_INV_SRC_TARGET_SYS Invalid source and target coordinate systems
ICSS_INV_TARGET_SYS Invalid target coordinate system
ICSS_SLP_LUN Error getting a logical unit number for the Solar

Lunar Planetary (SLP) file
ICSS_OPEN_SLP Error opening the SLP file
ICSS_ERR_READ_SLP Error reading from the SLP file
ICSS_SLP_NO_BODY SLP file does not contain the body requested
ICSS_TIMCOEF_LUN Error getting a logical unit number for the timing

coefficients file
ICSS_EREAD_TIMCOEF_FILE Error reading from the timing coefficients file

The following informational error may be returned to the caller, and output may be returned for
the requested coordinate system:

ICSS_SRC_EQ_TARGET Source and target coordinate systems are
identical

The KPGS application must check the return status immediately after every support routine call.
If the status indicates an error, the KPGS application should terminate processing.

4.16 ICSS_TRANSF_ATT

4.16.1 Purpose

ICSS_TRANSF_ATT transforms spin-stabilized attitude coordinates.

4.16.2 Description
This routine transforms spin-stabilized attitude data to and from one of the following coordinate systems:
GSE, GSM, or GCI.
The attitude data and the desired coordinate transformation code are passed to the routine from the KPGS,
and the transformed attitude data are returned. Any errors in performing the transformation are reported to the
KPGS in the return status.
Note that KPGS programs that use the ICSS_TRANSF_ATT routine must be linked with the NAG double-
precision math library. (See Section 2.4.1.3.3.)

4.16.3 Interfaces
Input to ICSS_TRANSF_ATT from the KPGS:

CSC/SD-92/6028
560-7SUG/0290

4–24

ATT_SRC_SYS The current coordinate system of the vector to be
transformed

ATT_TARGET_SYS The requested coordinate system for the transformed
attitude vector

ATT_POS Attitude position vector to be transformed
ATT_POS_TIME Time of attitude vector to be transformed

Output from ICSS_TRANSF_ATT to the KPGS:
TRANS_ATT_POS The transformed attitude vector
ROTATION_MATRIX The transformation rotation matrix
TRANS_ATT_STAT The status of the coordinate transformation

The relationship between the nine-element single-dimension array returned (ROTATION_MATRIX) and the
3-by-3 two-dimensional transformation rotation matrix is as follows:

ROTATION_MATRIX(1) = Position (1,1) [row, column]
ROTATION_MATRIX(2) = Position (2,1)
ROTATION_MATRIX(3) = Position (3,1)
ROTATION_MATRIX(4) = Position (1,2)
ROTATION_MATRIX(5) = Position (2,2)
ROTATION_MATRIX(6) = Position (3,2)
ROTATION_MATRIX(7) = Position (1,3)
ROTATION_MATRIX(8) = Position (2,3)
ROTATION_MATRIX(9) = Position (3,3)

4.16.4 Calling Sequence
For FORTRAN:

Call ICSS_TRANSF_ATT (ATT_SRC_SYS, ATT_TARGET_SYS, ATT_POS,
ATT_POS_TIME, TRANS_ATT_POS, ROTATION_MATRIX,
TRANS_ATT_STAT)

CHARACTER*3 ATT_SRC_SYS !GSE, GSM, GCI
CHARACTER*3 ATT_TARGET_SYS !GSE, GSM, GCI
REAL*8 ATT_POS(3) !(1) Spin rate in rpm

!(2) Right ascension in radians
!(3) Declination in radians

INTEGER*4 ATT_POS_TIME(2) !(1) YYYYDDD
!(2) milliseconds of day

REAL*8 TRANS_ATT_POS(3) !Transformed position vector that
!indicates array elements
!(1) Spin rate in rpm
!(2) Right ascension in radians
!(3) Declination in radians

REAL*8 ROTATION_MATRIX(9) !The transformation rotation
matrix
INTEGER*4 TRANS_ATT_STAT !Corresponds to message

Note: From FORTRAN, ICSS_TRANSF_ATT may be called using a 3-by-3 array for the rotation matrix.
For C:

ICSS_TRANSF_ATT (&ATT_SRC_SYS, &ATT_TARGET_SYS, &ATT_POS,
&ATT_POS_TIME, &TRANS_ATT_POS, &ROTATION_MATRIX,
&TRANS_ATT_STAT);

auto $DESCRIPTOR(ATT_SRC_SYS, “GSE”); /*GSE, GSM, GCI*/
auto $DESCRIPTOR(ATT_TARGET_SYS, “GSE”); /*GSE, GSM, GCI*/
double ATT_POS[3]; /*Spin rate, right
ascension,

 and declination*/

CSC/SD-92/6028
560-7SUG/0290

4–25

int ATT_POS_TIME[2]; /*(0) YYYYDDD
 (1) milliseconds of

day*/
double TRANS_ATT_POS[3]; /*Transformed position

 vector that indicates
array

 elements: spin rate,
right

 ascension, and
 declination*/

double ROTATION_MATRIX[9]; /*Rotation matrix*/
int TRANS_ATT_STAT; /*Corresponds to message*/

4.16.5 Error Conditions
The following fatal errors may be returned to the caller:

ICSS_INV_SRC_SYS Invalid source coordinate system
ICSS_INV_SRC_TARGET_SYS Invalid source and target coordinate systems
ICSS_INV_TARGET SYS Invalid target coordinate system
ICSS_SLP_LUN Error getting a logical unit number for the SLP
file
ICSS_OPEN_SLP Error opening the SLP file
ICSS_ERR_READ_SLP Error reading from the SLP file
ICSS_SLP_NO_BODY SLP file does not contain the body requested
ICSS_TIMCOEF_LUN Error getting a logical unit number for the timing

coefficients file
ICSS_EREAD_TIMCOEF_FILE Error reading from the timing coefficients file

The following informational error may be returned to the caller, and output may be returned for the requested
coordinate system:

ICSS_SRC_EQ_TARGET Source and target coordinate systems are
identical

The KPGS application must check the return status immediately after every support routine call. If the status
indicates an error, the KPGS application should terminate processing.

4.17 ICSS_CNVRT_TO_EPOCH

4.17.1 Purpose
This routine converts level-zero major frame time to CDF epoch format.

4.17.2 Description
This routine returns the equivalent epoch time with a given year, day of year, milliseconds, and
microseconds.

4.17.3 Interfaces
Input to ICSS_CNVRT_TO_EPOCH from the KPGS:

YEAR Year
DAYOFYEAR Day of year
MILLISEC milliseconds
MICROSEC Microseconds

Output from ICSS_CNVRT_TO_EPOCH to the KPGS:
EPOCH Time in CDF epoch format
STATUS Status of the time reformatting

CSC/SD-92/6028
560-7SUG/0290

4–26

4.17.4 Calling Sequence
For FORTRAN:

Call ICSS_CNVRT_TO_EPOCH (YEAR, DAYOFYEAR, MILLISEC, MICROSEC,
EPOCH,

STATUS)
INTEGER*4 YEAR !Year
INTEGER*4 DAYOFYEAR !Day of year
INTEGER*4 MILLISEC !milliseconds
INTEGER*4 MICROSEC !Microseconds
REAL*8 EPOCH !CDF epoch format
INTEGER*4 STATUS !Status

For C:
ICSS_CNVRT_TO_EPOCH (&YEAR, &DAYOFYEAR, &MILLISEC, &MICROSEC,

&EPOCH, &STATUS);
int YEAR;
int DAYOFYEAR;
int MILLISEC;
int MICROSEC;
double EPOCH;
int STATUS;

4.17.5 Error Conditions
The following error may be recorded in the system message log by ICSS_CNVRT_TO_EPOCH:

ICSS_ERR_CON_EPOCH There is an error converting to epoch time standard
This is a fatal error. The KPGS application must check the return status immediately after the call to
ICSS_CNVRT_TO_EPOCH. If the status indicates an error, the KPGS application must terminate
processing.

4.18 ICSS_GET_CD

4.18.1 Purpose
ICSS_GET_CD returns the physical filename of the optional calibration file that is associated with the
current version of the KPGS.

4.18.2 Description
This support routine queries the CDHF database for a calibration file, using the process program name and
the instrument component (see Section 2.2.2) specified as an argument to the routine. The filename returned is
the one listed in the database for the date contained in the primary level-zero data filename.

4.18.3 Interfaces
Input to ICSS_GET_CD from the KPGS:
The level-zero filename initialized by the ICSS_KPG_INIT support routine is used to derive the logical
filename of the calibration file.

CD_INSTRUMENT_COMP The instrument component of the calibration file, the
name

of which is being retrieved; unique calibration filename
used to differentiate multiple calibration files for the
instrument (e.g., C001 or C002)

Output from ICSS_GET_CD to the KPGS:
CD_FILENAME The physical filename of the calibration file
CD_STATUS The return status from ICSS_GET_CD

CSC/SD-92/6028
560-7SUG/0290

4–27

4.18.4 Calling Sequence
For FORTRAN:

Call ICSS_GET_CD (CD_INSTRUMENT_COMP, CD_FILENAME, CD_STATUS)
CHARACTER*4 CD_INSTRUMENT_COMP !Logical file extension
CHARACTER*44 CD_FILENAME !Physical filename
INTEGER*4 CD_STATUS !Completion status

For C:
ICSS_GET_CD (&CD_INSTRUMENT_COMP, &CD_DESC, &CD_STATUS);

auto $DESCRIPTOR (CD_INSTRUMENT_COMP, “EPI1”);
char CD_FILENAME [44];
auto $DESCRIPTOR (CD_DESC, CD_FILENAME);
int CD_STATUS;

Note: CD_FILENAME is returned as a nonterminated string. For C programs, a null character must be
inserted into the last character of the string before it can be used in a function call to open the file.

4.18.5 Error Conditions
The following error may be recorded in the system message log by ICSS_GET_CD:

ICSS_NO_CD_FILE There is no calibration file for this mission and
instrument

with the specified instrument component or for this time
period

This error is fatal. The KPGS application must check the return status immediately after the call to
ICSS_GET_CD. If the status indicates an error, the KPGS application must terminate processing.

4.19 ICSS_GET_PF

4.19.1 Purpose
ICSS_GET_PF returns the physical filename of the optional PI parameter file that is associated with the
current version of the KPGS.

4.19.2 Description
This support routine queries the CDHF database for a PI parameter file using the processing program name.
The filename returned is the one listed in the database for the date contained in the primary level-zero data
filename.

4.19.3 Interfaces
Input to ICSS_GET_PF from the KPGS:

Level-zero filename initialized by the ICSS_KPG_INIT support routine
Output from ICSS_GET_CD to the KPGS:

PF_FILENAME The physical filename of the PI parameter file
PF_STATUS The return status from ICSS_GET_PF

4.19.4 Calling Sequence
For FORTRAN:

Call ICSS_GET_PF (PF_FILENAME, PF_STATUS)
CHARACTER*44 PF_FILENAME !Physical filename
INTEGER*4 PF_STATUS !Completion status

For C:
ICSS_GET_PF (&PF_DESC, &PF_STATUS);

CSC/SD-92/6028
560-7SUG/0290

4–28

char PF_FILENAME [44];
auto $DESCRIPTOR (PF_DESC, PF_FILENAME);
int PF_STATUS;

Note: PF_FILENAME is returned as a nonterminated string. For C programs, a null character must be
inserted into the last character of the string before it can be used in a function call to open the file.

4.19.5 Error Conditions
The following error may be recorded in the system message log by ICSS_GET_PF:

ICSS_NO_PF_FILE There is no PI parameter file for this mission and instrument
This error is fatal. The KPGS application must check the return status immediately after the call to
ICSS_GET_PF. If the status indicates an error, the KPGS application must terminate processing.

4.20 ICSS_SPINPH_SIRIUS (GEOTAIL Support Only)

4.20.1 Purpose
ICSS_SPINPH_SIRIUS returns the spin-phase angle of the spacecraft.

4.20.2 Description
This support routine calculates the spin-phase angle of the spacecraft using SIRIUS and attitude data. Before
calling this support routine, the attitude files must have been opened prior to the first call to this unit.
Furthermore, the block of SIRIUS data that is used for calculation in this routine must have been retrieved by
ICSS_RET_SD or ICSS_RET_SD64.

4.20.3 Interfaces
Input to ICSS_SPINPH_SIRIUS from the KPGS:

TIME An array specifying the time for which the spin phase is
to

be calculated

CSC/SD-92/6028
560-7SUG/0290

4–29

TOLER Time tolerance in milliseconds for which the search is
performed

SIRIUS_DATA_BLOCK The SIRIUS data block used for computing the spin
phase
SIRIUS_SIZE The size of the SIRIUS data block received in frames

Output from ICSS_SPINPH_SIRIUS to the KPGS:

SPIN_PHASE Calculated spin-phase angle of the spacecraft
SPIN_RATE Calculated spin rate in rpm
STATUS Fault indicator status returned:

0 = Data returned is reliable.
1 = First data point in data block was invalid;

second value was valid.
2 = First and second values were invalid; third

or
fourth value was valid.

3 = No spin values matched the nominal spin
rate.

Spin phase set to fill value.
4 = No data were present in data block for

requested time. Spin phase set to fill
value.

4.20.4 Calling Sequence
For FORTRAN:

Call ICSS_SPINPH_SIRIUS (TIME, TOLER, SIRIUS_DATA_BLOCK, SIRIUS_SIZE,
SPIN_PHASE, SPIN_RATE, STATUS)

INTEGER*4 TIME(2) !(1) YYYYDDD
!(2) Millisecond of day

INTEGER*4 TOLER !milliseconds
BYTE SIRIUS_DATA_BLOCK(23040) !For full SIRIUS data block

or
SIRIUS_DATA_BLOCK(9216) !For 64-frame SIRIUS data block

INTEGER*4 SIRIUS_SIZE
REAL*4 SPIN_PHASE !Angle in radians
REAL*4 SPIN_RATE !In rpm
INTEGER*4 STATUS !Returned status

For C:

ICSS_SPINPH_SIRIUS (&TIME, &TOLER, &SIRIUS_DATA_BLOCK, &SIRIUS_SIZE,
&SPIN_PHASE, &SPIN_RATE, &STATUS);

int TIME[2];
int TOLER;
int SIRIUS_DATA_BLOCK(5760); /*For full SIRIUS data block*/

or
SIRIUS_DATA_BLOCK(2304); /*For 64-frame SIRIUS data

block*/
int SIRIUS_SIZE;
float SPIN_PHASE; /*Angle in radians*/
float SPIN_RATE; /*In rpm*/
int STATUS;

CSC/SD-92/6028
560-7SUG/0290

4–30

4.20.5 Error Conditions
This support routine has no error paths.

4.21 ICSS_GET_REFERENCE_FILES (IMP-8 Support Only)

4.21.1 Purpose
ICSS_GET_REFERENCE_FILES returns the physical filename(s), span start/stop date(s), and the number of
input filenames when KPGS opens and reads telemetry files directly.

4.21.2 Description
This support routine queries the CDHF database for the physical filename(s) and span start/stop date(s) for
the input telemetry files. The filename(s) and date(s) returned are the ones listed in the reference section of
the SFDU header.

4.21.3 Interfaces
Input to ICSS_GET_REFERENCE_FILES from the KPGS:

Level-zero filename initialized by the ICSS_KPG_INIT support routine
Output from ICSS_GET_REFERENCE_FILES to the KPGS:

REF_FILES The physical filename(s) and span start/stop date(s) of the level-
zero logical filename

NUM_REF_FILES The number of physical filenames returned
RETURN_STATUS The return status from ICSS_GET_REFERENCE_FILES

4.21.4 Calling Sequence
For FORTRAN:

Call ICSS_GET_REFERENCE_FILES (REF_FILES, NUM_REF_FILES,
RETURN_STATUS)

CHARACTER*44 REF_FILES (3,100) !Physical filename(s) and span start/stop
!date

INTEGER*4 NUM_REF_FILES !Number of filenames returned from
!database

INTEGER*4 RETURN_STATUS !Completion status
For C:

ICSS_GET_REFERENCE_FILES (&REF_FILES, &NUM_REF_FILES,
&RETURN_STATUS);

char REF_FILES[100] [3] [44];
auto $DESCRIPTOR (FILE_DESC, REF_FILES);
int NUM_REF_FILES;
int RETURN_STATUS;

Note: The above status values are not defined in ICSS_MESSAGE.INC and must be declared externally to be
used.

4.21.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_GET_REFERENCE_FILES:

X_NO_REFERENCE No reference filenames/dates could be obtained from the
database

X_DBA_E_MSG Database error occurred when obtaining reference
filenames/dates

These are fatal errors. The KPGS application must check the return status immediately after the call to
ICSS_GET_REFERENCE_FILES. If the status indicates an error, the KPGS application should terminate
processing if it is determined that no further processing can be performed.

CSC/SD-92/6028
560-7SUG/0290

4–31

4.22 ICSS_SPINPH_WIND_LZ (WIND Support Only)

4.22.1 Purpose
ICSS_SPINPH_WIND_LZ returns the spin-phase angle at a user input time for the WIND spacecraft.

4.22.2 Description
This support routine calculates the spin-phase angle of the WIND spacecraft using housekeeping data. Before
calling this support routine, the block of housekeeping data that will be used for calculation in this routine
must have been retrieved by ICSS_RET_HK.

4.22.3 Interfaces
Input to ICSS_SPINPH_WIND_LZ from the KPGS:

TIME An array specifying the time for which the spin phase is to be
calculated

HK_REC Housekeeping data record containing the time for which the
spin-

phase calculation is desired
Output from ICSS_SPINPH_WIND_LZ to the KPGS:

SPIN_PHASE Calculated spin-phase angle of the spacecraft
AVG_SPIN_RATE Calculated average spin rate for the entire housekeeping

data record
STNDEV_SPIN_RATE Calculated standard deviation of the spin rate for the entire

housekeeping data record
NUM_PNT Number of points used to compute the average and

standard deviation of the spin rate

CSC/SD-92/6028
560-7SUG/0290

4–32

INDICATOR Fault-level status indicator:
0 = No error
1 = Invalid telemetry mode in housekeeping

data
record, fill values for spin phase,

average
spin rate, and standard deviation of spin

rate
2 = User requested time not in housekeeping

data
record, fill values returned

3 = Cannot compute accurate spin rate and/or
standard deviation of spin rate, fill

values
returned

RETURN_STATUS The return status from ICSS_SPINPH_WIND_LZ

4.22.4 Calling Sequence
For FORTRAN:

Call ICSS_SPINPH_WIND_LZ (TIME, HK_REC, SPIN_PHASE, AVG_SPIN_RATE,
STNDEV_SPIN_RATE, NUM_PNT, INDICATOR, RETURN_STATUS)

INTEGER*4 TIME(2) !(1) YYYYDDD
!(2) milliseconds of day

INTEGER*4 HK_REC(REC_SIZE) !REC_SIZE should be replaced with
!maximum number of words in the
!housekeeping record

REAL*4 SPIN_PHASE !In radians
REAL*4 AVG_SPIN_RATE !In rad/sec
REAL*4 STNDEV_SPIN_RATE !In rad/sec
INTEGER*4 NUM_PNT
INTEGER*4 INDICATOR
INTEGER*4 RETURN_STATUS

For C:
ICSS_SPINPH_WIND_LZ (&TIME, &HK_REC, &SPIN_PHASE, &AVG_SPIN_RATE,

&STNDEV_SPIN_RATE, &NUM_PNT, &INDICATOR,
&RETURN_STATUS);

int TIME[2]; /*(1) YYYYDDD*/
/*(2) milliseconds of day*/

int HK_REC[REC_SIZE]; /*REC_SIZE should be replaced with number of
 words in the housekeeping data record*/

float SPIN_PHASE; /*In radians*/
float AVG_SPIN_RATE; /*In rad/sec*/
float STNDEV_SPIN_RATE; /*In rad/sec*/
int NUM_PNT;
int INDICATOR;
int RETURN_STATUS;

4.22.5 Error Conditions
The following warning condition may be detected by this subroutine:

ICSS_INVALID_MODE Invalid telemetry mode found in WIND
housekeeping data record header

The following fatal errors may be recorded in the system message log by ICSS_SPINPH_WIND_LZ:

CSC/SD-92/6028
560-7SUG/0290

4–33

ICSS_AVG_SPIN_RATE_ERR Calculated average spin rate housekeeping data
record is equal to zero

ICSS_REQ_TIME_ERR User-requested time not in WIND housekeeping
data record

ICSS_SPIN_RATE_ERR Cannot compute accurate spin rate and/or standard
deviation of spin rate for WIND housekeeping data
record

The KPGS application must check the return status immediately after the call to ICSS_SPINPH_WIND_LZ. If
the status indicates an error, the KPGS application can discontinue processing, extrapolate from previously
known values, or reset the status to normal and continue processing.

4.23 ICSS_PAYLOAD_TO_GSE

4.23.1 Purpose
ICSS_PAYLOAD_TO_GSE transforms nonspinning payload coordinates.

4.23.2 Description
This support routine transforms nonspinning payload coordinates to GSE coordinates. The payload
coordinates and GSE attitude angles are passed to the routine from the KPGS, and the transformation rotation
matrixes are returned.
This routine uses PAYLOAD_POS coordinates to determine the GSE_POS. It returns the GSE_POS or the
GSE_POS with the SC_VEL vector added in, as a function of whether or not the PAYLOAD_POS
coordinates are position coordinates or velocity coordinates.
The user is responsible for knowing whether PAYLOAD_POS is a position or a rate. If the PAYLOAD_POS
is a position, the routine is called with the VEL_FLAG set to zero. If the PAYLOAD position is a rate, the
routine is called with the VEL_FLAG set to a nonzero value and the SC_VEL set to a GSE spacecraft
velocity value. In either case the ROTATION_MATRIX is not affected.
Note that KPGS programs that use the ICSS_PAYLOAD_TO_GSE routine must be linked with the NAG
double-precision math library. (See Section 2.4.1.3.3.)

4.23.3 Interfaces
Input to ICSS_PAYLOAD_TO_GSE from the KPGS:

PAYLOAD_POS The payload coordinates to be transformed
GSE_ATT_POS GSE attitude angles (right ascension and declination) at
the

epoch time of the spacecraft coordinates
Output from ICSS_PAYLOAD_TO_GSE to the KPGS:

ROTATION_MATRIX The transformation rotation matrix
GSE_POS The transformed GSE coordinates

The relationship between the nine-element single-dimension array returned (ROTATION_MATRIX) and the
3-by-3 two-dimensional transformation rotation matrix is as follows:

ROTATION_MATRIX (1) = Position (1,1) [row, column]
ROTATION_MATRIX (2) = Position (2,1)
ROTATION_MATRIX (3) = Position (3,1)
ROTATION_MATRIX (4) = Position (1,2)
ROTATION_MATRIX (5) = Position (2,2)
ROTATION_MATRIX (6) = Position (3,2)
ROTATION_MATRIX (7) = Position (1,3)
ROTATION_MATRIX (8) = Position (2,3)
ROTATION_MATRIX (9) = Position (3,3)

CSC/SD-92/6028
560-7SUG/0290

4–34

4.23.4 Calling Sequence
For FORTRAN:

Call ICSS_PAYLOAD_TO_GSE (PAYLOAD_POS, GSE_ATT_POS,
ROTATION_MATRIX, GSE_POS, VEL_FLAG, SC_VEL)

REAL*8 PAYLOAD_POS (3) !The payload coordinates
(x,y,z) to

!be transformed
REAL*4 GSE_ATT_POS (2) !(1) Right ascension in radians

!(2) Declination in radians
REAL*8 ROTATION_MATRIX (9) !The transformation rotation
matrix
REAL*8 GSE_POS (3) !The transformed GSE
coordinates
INTEGER*4 VEL_FLAG !Flag to show whether the
quality

!being transformed is a velocity.
!Value = 0 is not a velocity; do

not
!add translation vector. Value >

0 is
!a velocity; add in spacecraft
!velocity vector

REAL*8 SC_VEL(3) !Spacecraft velocity in GSE
!coordinate; used when

VEL_FLAG
!is nonzero

For C:
ICSS_PAYLOAD_TO_GSE (&PAYLOAD_POS, &GSE_ATT_POS,

&ROTATION_MATRIX, &GSE_POS, &VEL_FLAG, &SC_VEL);
double PAYLOAD_POS[3];
float GSE_ATT_POS[2];
double ROTATION_MATRIX[9];
double GSE_POS[3];
int VEL_FLAG;
double SC_VEL[3];

4.23.5 Error Conditions
This support routine has no error paths.

4.24 ICSS_CNVT_FROM_RP

4.24.1 Purpose
ICSS_CNVT_FROM_RP converts a vector in the spacecraft rotating coordinate frame to a vector in the fixed
payload coordinate frame.

4.24.2 Description
Given the spin-phase angle and a vector in the spacecraft rotating coordinate frame,
ICSS_CNVT_FROM_RP converts the vector to the fixed payload coordinate frame.

4.24.3 Interfaces
Input to ICSS_CNVT_FROM_RP from the KPGS:

CSC/SD-92/6028
560-7SUG/0290

4–35

SPIN_PHASE The spin-phase angle in radians
SC_VECTOR The XYZ vector in the spacecraft rotating coordinate
frame

Output from ICSS_CNVT_FROM_RP to the KPGS:
PAYLOAD_VECTOR The XYZ vector in the fixed payload coordinate frame
MATRIX The transformation matrix used in converting the vector

The order of the nine elements of the (MATRIX) array is as follows: (1,1), (2,1), (3,1), (1,2), (2,2), (3,2),
(1,3), (2,3), and (3,3).

4.24.4 Calling Sequence
For FORTRAN:

Call ICSS_CNVT_FROM_RP (SPIN_PHASE, SC_VECTOR, PAYLOAD_VECTOR,
MATRIX)

REAL*4 SPIN_PHASE !The spin-phase angle in radians
REAL*4 SC_VECTOR(3) !The XYZ vector in spacecraft rotating

!coordinate

CSC/SD-92/6028
560-7SUG/0290

4–36

REAL*4 PAYLOAD_VECTOR(3) !The XYZ vector in fixed payload
!coordinate

REAL*8 MATRIX(9) !The transformation matrix
For C:

ICSS_CNVT_FROM_RP (&SPIN_PHASE, &SC_VECTOR, &PAYLOAD_VECTOR,
&MATRIX);

float SPIN_PHASE;
float SC_VECTOR[3];
float PAYLOAD_VECTOR[3];
double MATRIX[9];

4.24.5 Error Conditions
This routine has no error handling.

4.25 ICSS_POS_OF_SUN

4.25.1 Purpose
ICSS_POS_OF_SUN returns the Sun position and velocity vectors.

4.25.2 Description
This routine returns the Sun position and velocity vectors that correspond to a given request time.

4.25.3 Interfaces
Input to ICSS_POS_OF_SUN from the KPGS:

SUN_VEC_REQ_DATE The day of year and time of day of the requested Sun
vectors

Output from ICSS_POS_OF_SUN to the KPGS:
SUN_POS_VEC The Sun position vector that corresponds to the request

time
SUN_VEL_VEC The Sun velocity vector that corresponds to the request

time
SUN_RET_STATUS The status of the Sun vector request

4.25.4 Calling Sequence
For FORTRAN:

Call ICSS_POS_OF_SUN (SUN_REQ_DATE, SUN_POS_VEC, SUN_VEL_VEC,
SUN_RET_STATUS)

INTEGER*4 SUN_REQ_DATE(2) !(1) YYYYDDD
!(2) milliseconds of day

REAL*8 SUN_POS_VEC(3) !Sun position vector (x,y,z)(km)
REAL*8 SUN_VEL_VEC(3) !Sun velocity vector (dx,dy,dz)(km/sec)
INTEGER*4 SUN_RET_STATUS !Corresponds to message

For C:
ICSS_POS_OF_SUN (&SUN_REQ_DATE, &SUN_POS_VEC, &SUN_VEL_VEC,

&SUN_RET_STATUS);
int SUN_REQ_DATE[2];
double SUN_POS_VEC[3];
double SUN_VEL_VEC[3];
int SUN_RET_STATUS;

CSC/SD-92/6028
560-7SUG/0290

4–37

4.25.5 Error Conditions
The following fatal errors may be recorded in the system message log by ICSS_POS_OF_SUN:

ICSS_SLP_LUN Error getting a logical unit number for the SLP file
ICSS_OPEN_SLP Error opening the SLP file
ICSS_ERR_READ_SLP Error reading from the SLP file
ICSS_SLP_NO_BODY SLP file does not contain the body requested
ICSS_TIMCOEF_LUN Error getting a logical unit number for the timing

coefficients file
ICSS_EREAD_TIMCOEF_FILE Error reading from the timing coefficients file

The KPGS application must check the return status immediately after the call to ICSS_POS_OF_SUN. If the
status indicates an error, the KPGS application must terminate processing.
The following warning condition may be detected by this subroutine:

ICSS_TIME_OUTRANGE Requested time out of range of files

4.26 ICSS_VELOCITY_TRANS

4.26.1 Purpose
ICSS_VELOCITY_TRANS converts velocities from one coordinate system to another.

4.26.2 Description
The vectors in GCI, GSE, or GSM coordinates are accepted and transformed into the user’s choice of GCI,
GSE, GSM, or GEO coordinates.

4.26.3 Interfaces
Input to ICSS_VELOCITY_TRANS from the KPGS:

ORB_SRC_SYS The current coordinate system of the vector to be
transformed

ORB_TARGET_SYS The requested coordinate system for the transformed
orbit

vector
ORB_POS_VEL Orbit vectors (position and velocity) to be transformed

CSC/SD-92/6028
560-7SUG/0290

4–38

ORB_POS_TIME Time of vector to be transformed
VELOCITY_REQ A flag showing that velocities are to be transformed

Output from ICSS_VELOCITY_TRANS to the KPGS:
TRANS_ORB_POS_VEL Transformed orbit vector
ROTATION_MATRIX Rotation matrix
TRANS_ORB_STAT The status of the coordinate transformation

The relationship between the nine-element, single-dimension array returned (ROTATION_MATRIX) and the
3-by-3 dimensional transformation rotation matrix is described in Section 4.15.3.

4.26.4 Calling Sequence
For FORTRAN:

Call ICSS_VELOCITY_TRANS (ORB_SRC_SYS, ORB_TARGET_SYS,
ORB_POS_VEL, ORB_POS_TIME, TRANS_ORB_POS_VEL,
ROTATION_MATRIX, VELOCITY_REQ, TRANS_ORB_STAT)

CHARACTER*3 ORB_SRC_SYS !GSE, GSM, GCI
CHARACTER*3 ORB_TARGET_SYS !GSE, GSM, GCI, GEO
REAL*8 ORB_POS_VEL(6) !Position and velocity vectors

!(x-pos, y-pos, z-pos, x-vel,
!y-vel, and z-vel)

INTEGER*4 ORB_POS_TIME(2) !Time of orbit vector
!(1) YYYYDDD
!(2) milliseconds of day

REAL*8 TRANS_ORB_POS_VEL(6)
REAL*8 ROTATION_MATRIX(9) !The transformation rotation

!matrix
INTEGER*4 VELOCITY_REQ !Flag to show if velocity

!transformations are needed
INTEGER*4 TRANS_ORB_STAT !Corresponding to message

!0 = Velocity computations are
!not done
!1 = Velocity computations are

done
For C:

ICSS_VELOCITY_TRANS (&ORB_SRC_SYS, &ORB_TARGET_SYS,
&ORB_POS_VEL, &ORB_POS_TIME, &TRANS_ORB_POS_VEL,
&ROTATION_MATRIX, &VELOCITY_REQ, &TRANS_ORB_STAT);

auto $DESCRIPTOR(ORB_SRC_SYS, “GSE”);
auto $DESCRIPTOR(ORB_TARGET_SYS, “GSE”);
double ORB_POS_VEL[6];
int ORB_POS_TIME[2];
double TRANS_ORB_POS_VEL[6];
double ROTATION_MATRIX[9];
int VELOCITY_REQ;
int TRANS_ORB_STAT;

4.26.5 Error Conditions
The following fatal errors may be returned to the caller:

ICSS_INV_SRC_SYS Invalid source coordinate system
ICSS_INV_SRC_TARGET_SYS Invalid source and target coordinate systems
ICSS_INV_TARGET_SYS Invalid target coordinate system
ICSS_SLP_LUN Error getting a logical unit number for the SLP
file

CSC/SD-92/6028
560-7SUG/0290

4–39

ICSS_OPEN_SLP Error opening the SLP file
ICSS_ERR_READ_SLP Error reading from the SLP file
ICSS_SLP_NO_BODY SLP file does not contain the body requested
ICSS_TIMCOEF_LUN Error getting a logical unit number for timing

coefficients file
ICSS_OPEN_TIMCOEF Error opening the timing coefficients file
ICSS_EREAD_TIMCOEF_FILE Error reading from the timing coefficients file

The following informational error may be returned to the caller, and output may be returned for the requested
coordinate system:

ICSS_SRC_EQ_TARGET Source and target coordinate systems are
identical

The KPGS application must check the return status immediately after every subroutine call. If the status
indicates an error, the KPGS application should terminate processing.

4.27 ICSS_GCI_TO_GEODETIC

4.27.1 Purpose
ICSS_GCI_TO_GEODETIC converts an input GCI vector to geodetic longitude, latitude, and height.

4.27.2 Description
This routine converts a mean-of-date GCI vector to true-of-date geodetic coordinates.

4.27.3 Interfaces
Input to ICSS_GCI_TO_GEODETIC from the KPGS:

idtfTime Time for the calculation in IDTF format
gciVector The mean-of-date GCI vector in kilometers

Output from ICSS_GCI_TO_GEODETIC to the KPGS:
latitude True-of-date geodetic latitude in radians
longitude True-of-date geodetic longitude in radians
height True-of-date geodetic height in kilometers

4.27.4 Calling Sequence
For FORTRAN:

Call ICSS_GCI_TO_GEODETIC (idtfTime, gciVector, latitude, longitude, height)
INTEGER*4 idtfTime(2) !(1) YYYYDDD

!(2) milliseconds of day
REAL*8 gciVector(3) !x,y,z
REAL*8 latitude, longitude, height

For C:
ICSS_GCI_TO_GEODETIC (&idtfTime, &gciVector, &latitude, &longitude, &height);

int idtfTime[2];
double gciVector[3];
double latitude, longitude, height;

4.27.5 Error Conditions
If iteration for the latitude and height fails to converge, the latitude, longitude, and height are returned as
zeros.

CSC/SD-92/6028
560-7SUG/0290

4–40

4.28 ICSS_GEODETIC_TO_GCI

4.28.1 Purpose
ICSS_GEODETIC_TO_GCI converts geodetic coordinates to a vector in GCI coordinates.

4.28.2 Description
This routine converts an input geodetic longitude, latitude, and height to a GCI vector.

4.28.3 Interfaces
Input to ICSS_GEODETIC_TO_GCI from the KPGS:

idtfTime Time for the calculation in IDTF format
latitude True-of-date geodetic latitude in radians
longitude True-of-date geodetic longitude in radians
height True-of-date geodetic height in kilometers

Output from ICSS_GEODETIC_TO_GCI to the KPGS:
gciVector The mean-of-date GCI vector in kilometers

4.28.4 Calling Sequence
For FORTRAN:

Call ICSS_GEODETIC_TO_GCI (idtfTime, latitude, longitude, height, gciVector)
INTEGER*4 idtfTime(2) !(1) YYYYDDD

!(2) milliseconds of day
REAL*8 latitude, longitude, height
REAL*8 gciVector(3) !x,y,z

For C:
ICSS_GEODETIC_TO_GCI (&idtfTime, &latitude, &longitude, &height, &gciVector);

int idtfTime[2];
double latitude, longitude, height;
double gciVector[3];

4.28.5 Error Conditions
This routine has no error handling.

4.29 ICSS_SD_BLK_TYP

4.29.1 Purpose
ICSS_SD_BLK_TYP is used to determine whether a block of SIRIUS data retrieved by the ICSS_RET_SD
support routine contained a file message block.

4.29.2 Description
ICSS_SD_BLK_TYP returns a status that indicates whether the last block of SIRIUS data retrieved by the
ICSS_RET_SD support routine contained a file message block.

4.29.3 Interfaces
There are no inputs to the ICSS_SD_BLK_TYP routine.
Output from ICSS_SD_BLK_TYP to the KPGS:

SD_RET_STATUS The status of the last SIRIUS data block retrieved by the
ICSS_RET_SD support routine

CSC/SD-92/6028
560-7SUG/0290

4–41

4.29.4 Calling Sequence
For FORTRAN:

Call ICSS_SD_BLK_TYP(SD_RET_STATUS)
INTEGER*4 SD_RET_STATUS ! = ICSS_MSG_BLK_RET_SD when last block

! contained message block
! = SS$_NORMAL otherwise

For C:
ICSS_SD_BLK_TYP(&SD_RET_STATUS);

int SD_RET_STATUS;

4.29.5 Error Conditions
There are no error conditions associated with the ICSS_SD_BLK_TYP support routine.

4.30 ICSS_INDICES

4.30.1 Purpose
ICSS_INDICES returns the observed 10.7-centimeter (cm) flux, 90-day mean 10.7-cm flux, estimated
average daily A index value (AP), and estimated KPs for the 3-hour period.

4.30.2 Description
This support routine queries the CDHF database for solar indices using an observation date. The solar
indices returned are those listed in the database for the observation date.

4.30.3 Interfaces
Input to ICSS_INDICES from the KPGS:

OBS_DATE Observation date
Output from the ICSS_INDICES to the KPGS:

OBS_10_7_FLUX Observed 10.7-cm flux
MEAN_10_7_FLUX 90-day mean 10.7-cm flux
AP_EST Estimated AP
KP_EST Estimated KPs for each 3-hour period
STATUS Return status

Note: A negative 1 is returned from ICSS_INDICES if no data is found for the corresponding output
argument. The KPGS application should check each variable individually (i.e., OBS_10_7_FLUX,
MEAN_10_7_FLUX, AP_EST, and KP_EST) for negative 1 after calling ICSS_INDICES.

4.30.4 Calling Sequences
For FORTRAN:

Call ICSS_INDICES (OBS_DATE, OBS_10_7_FLUX, MEAN_10_7_FLUX, AP_EST,
KP_EST, STATUS)

INTEGER*4 OBS_DATE(2) !Observation date
!(1) YYYYDDD
!(2) milliseconds of day

INTEGER*4 OBS_10_7_FLUX !Observed 10.7-cm flux
INTEGER*4 MEAN_10_7_FLUX !Mean 10.7-cm flux
INTEGER*4 OBS_AP !Estimated daily AP
INTEGER*4 KP_EST(8) !Estimated KPs
INTEGER*4 STATUS !Status

For C:
ICSS_INDICES (&OBS_DATE, &OBS_10_7_FLUX, &MEAN_10_7_FLUX, &AP_EST,

&KP_EST, STATUS);

CSC/SD-92/6028
560-7SUG/0290

4–42

int OBS_DATE[2];
int OBS_10_7_FLUX;
int MEAN_10_7_FLUX;
int OBS_AP;
int KP_EST[8];
int STATUS;

4.30.5 Error Conditions
The following error may be recorded in the system message log by ICSS_INDICES:

ICSS_DB_ERR Error accessing the database
The KPGS application must check the returned status immediately after the call to ICSS_INDICES. If the
status indicates an error, the KPGS application can discontinue processing if the program is unable to do any
other processing at this time.

4.31 ICSS_CNVRT_EPOCH_TO_PB5

4.31.1 Purpose
ICSS_CNVRT_EPOCH_TO_PB5 converts a date/time in the epoch format to one in the PB5 format.

4.31.2 Description
This support routine transforms a date/time that is formatted in the epoch format to one that is in the PB5
format.

4.31.3 Interfaces
Input to the ICSS_CNVRT_EPOCH_TO_PB5 from the KPGS:

EPOCH_DATE/TIME An epoch-formatted date/time
Output from the ICSS_CNVRT_EPOCH_TO_PB5 to the KPGS:

PB5_DATE/TIME A PB5-formatted date/time

4.31.4 Calling Sequence
For FORTRAN:

Call ICSS_CNVRT_EPOCH_TO_PB5 (EPOCH_TIME, PB5_TIME, RETURN_STATUS)
REAL*8 EPOCH_TIME !Epoch-formatted date/time
INTEGER*4 PB5_TIME(3) !PB5-formatted date/time

!(1) Year
!(2) Day of year
!(3) milliseconds of day

INTEGER*4 RETURN_STATUS
For C:

ICSS_CNVRT_EPOCH_TO_PB5 (&EPOCH_TIME, &PB5_TIME,
&RETURN_STATUS);

double EPOCH_TIME;
int PB5_TIME[3];
int RETURN_STATUS;

4.31.5 Error Conditions
The following fatal error may be returned to the caller:

ICSS_ERR_CON_EPOCH Epoch-formatted date/time was invalid

CSC/SD-92/6028
560-7SUG/0290

4–43

4.32 ICSS_TRANSF_TO_MTC

4.32.1 Purpose
ICSS_TRANSF_TO_MTC transforms orbit coordinates or any vectorized quantity. MTCs are as follows:

• Y along the satellite spin axis (approximately longitudinal)
• X along the projection of X topographic onto the satellite spin plane (approximately

northward)
• Z completes the right-handed coordinate system

Note: X topographic is defined as on any spherical surface concentric with the Earth, X is parallel to this
surface with positive direction northward.

4.32.2 Description
ICSS_TRANSF_TO_MTC transforms orbit position data or any vectorized quantity to the MTC system from
any of the following coordinate systems:

• GSE
• GSM
• GCI

The data is passed to the routine from the KPGS, and the transformed orbit (or vector) data is returned. Any
errors in performing the transformation are reported to the KPGS in the return status.
Note that the KPGS programs that use the ICSS_TRANSF_TO_MTC routine must be linked with the NAG
double-precision math library (see Section 2.4.1.3.3).

4.32.3 Interfaces
Input to ICSS_TRANSF_TO_MTC from the KPGS:

REFERENCE_FRAME Current coordinate system of the vector to be transformed
SPIN_AXIS_ATT Spacecraft spin axis orientation

CSC/SD-92/6028
560-7SUG/0290

4–44

TIME Time of orbit vector to be transformed
INPUT_VECTOR Orbit position or other vector to be transformed

Output from ICSS_TRANSF_TO_MTC to the KPGS:
OUTPUT_VECTOR The transformed orbit or other vector
TRANSFORM_MATRIX The transformation rotation matrix
RETURN_STATUS The return status from the routine

The relationship between the nine-element single-dimension array returned (TRANSFORM_MATRIX) and
the 3-by-3 two-dimensional transformation rotation matrix is as follows:

ROTATION_MATRIX(1) = Position (1,1) [row, column]
ROTATION_MATRIX(2) = Position (2,1)
ROTATION_MATRIX(3) = Position (3,1)
ROTATION_MATRIX(4) = Position (1,2)
ROTATION_MATRIX(5) = Position (2,2)
ROTATION_MATRIX(6) = Position (3,2)
ROTATION_MATRIX(7) = Position (1,3)
ROTATION_MATRIX(8) = Position (2,3)
ROTATION_MATRIX(9) = Position (3,3)

4.32.4 Calling Sequence
For FORTRAN:

Call ICSS_TRANSF_TO_MTC (REFERENCE_FRAME, SPIN_AXIS_ATT, TIME,
INPUT_VECTOR, OUTPUT_VECTOR, TRANSFORM_MATRIX,
RETURN_STATUS)

CHARACTER *3 REFERENCE_FRAME !GCI, GSE, GSM
REAL*4 SPIN_AXIS_ATT(3) !Spacecraft spin axis orientation

!(1)Right ascension in radians
!(2)Declination in radians
!(3)Spin rate in rpm

INTEGER*4 TIME(2) !(1) YYYYDDD
!(2) milliseconds of day

REAL*8 INPUT_VECTOR(3) !Source position (x, y, z)
REAL*8 OUTPUT_VECTOR(3) !Transformed position (x, y, z)
REAL*8 TRANSFORM_MATRIX(9) !Transformation rotation matrix
INTEGER*4 RETURN_STATUS !Status of call

Note: From FORTRAN, ICSS_TRANSF_TO_MTC may be called using a 3-by-3 array for the rotation
matrix.
For C:

ICSS_TRANSF_TO_MTC (&REFERENCE_FRAME,& SPIN_AXIS_ATT, &TIME,
&INPUT_VECTOR, &OUTPUT_VECTOR, &TRANSFORM_MATRIX,
&RETURN_STATUS)

auto $DESCRIPTOR(REFERENCE_FRAME, “GSE”); /*GCI, GSE,
GSM*/
single $SPIN_AXIS_ATT[3]; /*Spacecraft spin axis

 orientation*/
int TIME[2]; /*(0)
YYYYDDD*/

/*(1)
milliseconds of
day*/
double INPUT_VECTOR[3]; /*Source
vector*/
double OUTPUT_VECTOR[3]; /*Transformed

 vector*/
double TRANSFORM_MATRIX[9]; /*Rotation matrix*/

CSC/SD-92/6028
560-7SUG/0290

4–45

int RETURN_STATUS; /*Status of
call*/

Assumption: The same reference frame is used for both the spin axis vector and the input vector.

4.32.5 Error Conditions
All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

4.33 ICSS_TRANSF_TO_MSPC

4.33.1 Purpose
ICSS_TRANSF_TO_MSPC transforms orbit coordinates or any vectorized quantity. MSPC for POLAR is
defined as follows:

• Z along the satellite spin vector
• X along the projection of satellite velocity onto the spin plane of the satellite
• Y completes the right-handed coordinate system

4.33.2 Description
ICSS_TRANSF_TO_MSPC transforms orbit position data or any vectorized quantity to the modified SPC
coordinate system from any of the following coordinate systems:

• GSE
• GSM
• GCI

The data is passed to the routine from the KPGS, and the transformed orbit (or vector) data is returned. Any
errors in performing the transformation are reported to the KPGS in the return status.
Note that the KPGS programs that use the ICSS_TRANSF_TO_MSPC routine must be linked with the NAG
double-precision math library (see Section 2.4.1.3.3).

4.33.3 Interfaces
Input to ICSS_TRANSF_TO_MSPC from the KPGS:

REFERENCE_FRAME Current coordinate system of the vector to be transformed
SPIN_AXIS_ATT Spacecraft spin axis orientation
VELOCITY_VECTOR MSPC reference unit vector
TIME Time of orbit vector to be transformed
INPUT_VECTOR Orbit position or other vector to be transformed

Output from ICSS_TRANSF_TO_MTC to the KPGS:
OUTPUT_VECTOR The transformed orbit or other vector
TRANSFORM_MATRIX The transformation rotation matrix
RETURN_STATUS The return status from the routine

The relationship between the nine-element single-dimension array returned (ROTATION_MATRIX) and the
3-by-3 two-dimensional transformation rotation matrix is as follows:

ROTATION_MATRIX(1) = Position (1,1) [row, column]
ROTATION_MATRIX(2) = Position (2,1)
ROTATION_MATRIX(3) = Position (3,1)
ROTATION_MATRIX(4) = Position (1,2)
ROTATION_MATRIX(5) = Position (2,2)
ROTATION_MATRIX(6) = Position (3,2)
ROTATION_MATRIX(7) = Position (1,3)
ROTATION_MATRIX(8) = Position (2,3)
ROTATION_MATRIX(9) = Position (3,3)

CSC/SD-92/6028
560-7SUG/0290

4–46

4.33.4 Calling Sequence
For FORTRAN:

Call ICSS_TRANSF_TO_MSPC (REFERENCE_FRAME, SPIN_AXIS_ATT,
VELOCITY_VECTOR, TIME, INPUT_VECTOR, OUTPUT_VECTOR,
TRANSFORM_MATRIX, RETURN_STATUS)

CHARACTER *3 REFERENCE_FRAME !GCI, GSE, GSM
REAL*4 SPIN_AXIS_ATT(3) !Spacecraft spin axis orientation

!(1)Right ascension in radians
!(2)Declination in radians
!(3)Spin rate in rpm

REAL*8 VELOCITY_VECTOR(3) !MSPC reference unit velocity
(x, y,

z)
INTEGER*4 TIME(2) !(1) YYYYDDD

!(2) milliseconds of day
REAL*8 INPUT_VECTOR(3) !Source position (x, y, z)
REAL*8 OUTPUT_VECTOR(3) !Transformed position (x, y, z)
REAL*8 TRANSFORM_MATRIX(9) !Transformation rotation matrix
INTEGER*4 RETURN_STATUS !Status of call

Note: From FORTRAN, ICSS_TRANSF_TO_MSPC may be called using a 3-by-3 array for the rotation
matrix.
For C:

ICSS_TRANSF_TO_MSPC (&REFERENCE_FRAME, &SPIN_AXIS_ATT,
&VELOCITY_VECTOR, &TIME, &INPUT_VECTOR, &OUTPUT_VECTOR,
&TRANSFORM_MATRIX, &RETURN_STATUS)

auto $DESCRIPTOR(REFERENCE_FRAME, “GSE”); /*GCI, GSE,
GSM*/
float $SPIN_AXIS_ATT[3]; /*Spacecraft spin axis

 orientation*/
double VELOCITY_VECTOR[3]; /*MSPC
reference

 unit velocity*/
int TIME[2]; /*(0)
YYYYDDD*/

/*(1)
milliseconds of

 day*/
double INPUT_VECTOR[3]; /*Source
vector*/
double OUTPUT_VECTOR[3]; /*Transformed

 vector*/
double TRANSFORM_MATRIX[9]; /*Rotation matrix*/
int RETURN_STATUS; /*Status of
call*/

Assumption: The same reference frame is used for both the spin axis vector and the input vector.

4.33.5 Error Conditions
All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

CSC/SD-92/6028
560-7SUG/0290

4–47

4.34 ICSS_GET_FILE

4.34.1 Purpose
ICSS_GET_FILE returns an array of physical filename(s), span start date(s), and span stop date(s).

4.34.2 Description
This support routine queries the CDHF database for physical filename(s), associated span start date(s), and
span stop date(s) based on an input mission, datatype, descriptor, and a primary/secondary flag. Based on the
input primary/secondary flag, this routine returns a primary or secondary file. This routine also builds the
logical file identifier and adds it to the reference section of the SFDU file.

4.34.3 Interfaces
Input to ICSS_GET_FILE from the KPGS:

MISSION_NAME The mission name
DATA_TYPE The data type
DESCRIPTOR The descriptor
PRIM_SEC_FLAG The primary/secondary flag

Output from the ICSS_GET_FILE to the KPGS:
INPUT_FILES An array of physical filename(s)
START_DATE An array of span start date(s)
STOP_DATE An array of span stop date(s)
NUM_FILES The number of files listed in input_files (up to
99)
STATUS Status returned from this routine

4.34.4 Calling Sequences
For FORTRAN:

Call ICSS_GET_FILE (MISSION_NAME, DATA_TYPE, DESCRIPTOR,
PRIM_SEC_FLAG, INPUT_FILES, START_DATE, STOP_DATE,
NUM_FILES, STATUS)

CHARACTER*2 MISSION_NAME !Mission name
CHARACTER*2 DATA_TYPE !Data type
CHARACTER*4 DESCRIPTOR !Descriptor
CHARACTER*1 PRIM_SEC_FLAG !Primary/secondary flag

!P = Primary
!S = Secondary

CHARACTER*44 INPUT_FILES(99) !Physical filename
INTEGER*4 START_DATE(2,99) !Span start date
INTEGER*4 STOP_DATE(2,99) !Span stop date

!Date formats
!(1) YYYYDDD
!(2) milliseconds of day

INTEGER*4 NUM_FILES !The number of input files
INTEGER*4 STATUS !Return status

For C:
ICSS_GET_FILE (&MISSION_DESC, &DATA_TYPE_DESC, &DESCRIPTOR_DESC,

&PRIM_SEC_DESC, &INPUT_FILE_DESC, &START_DATE,
&STOP_DATE, &NUM_FILES, &STATUS);

auto $DESCRIPTOR(MISSION_DESC, “SO”); /*Mission short name*/
auto $DESCRIPTOR(DATA_TYPE_DESC, “LZ”); /*Input data type*/
auto $DESCRIPTOR(DESCRIPTOR_DESC, “ERNE”); /*Instrument

 descriptor*/

CSC/SD-92/6028
560-7SUG/0290

4–48

auto $DESCRIPTOR(PRIM_SEC_DESC, “P”); /*P or S*/
char INPUT_FILES[99] [44]; /*Filenames*/
auto $DESCRIPTOR(INPUT_FILE_DESC, INPUT_FILES;
int START_DATE[99] [2]; /*File start dates*/
int STOP_DATE[99] [2]; /*File end dates*/
int NUM_FILES; /*Number of input
files*/
int STATUS;

Note: The filenames returned by this routine are not null terminated. A null character should be inserted into
INPUT_FILE[i] [43] before using it as an argument to the fopen function.

4.34.5 Error Conditions
The following fatal errors may be recorded in the system message log by ICSS_GET_FILE:

X_DBA_E_MSG Database error occurred obtaining reference filenames/
dates

X_NO_REFERENCE No filenames/dates could be obtained from the database
The KPGS application must check the returned status immediately after the call to ICSS_GET_FILE. If the
status indicates an error, the KPGS application must terminate processing.

4.35 ICSS_COMPUTE_CGMLT

4.35.1 Purpose
ICSS_COMPUTE_CGMLT computes the CGMLT for a given date and time and geodetic orbit position.

4.35.2 Description
This support routine uses the algorithm that has been supplied by Kile Baker of the Johns Hopkins Applied
Physics Laboratory to compute the CGMLT.

4.35.3 Interfaces
Input to the ICSS_COMPUTE_CGMLT from the KPGS:

CGMLT_REQ_TIME Day of year and time of day of requested CGMLT
GEO_ORB_POSITION Spacecraft position in geodetic reference frame

Output from the ICSS_COMPUTE_MLT to the KPGS:
CGMLT_Time Computed CGMLT
RETURN_STATUS Status of call

4.35.4 Calling Sequence
For FORTRAN:

Call ICSS_COMPUTE_CGMLT (CGMLT_REQ_TIME, GEO_ORB_POS, CGMLT_TIME,
RETURN_STATUS)
INTEGER*4 CGMLT_REQ__TIME(2) !Date/time of requested
CGMLT

!(1) YYYYDDD
!(2) milliseconds

REAL*8 GEO_ORB_POS(3) !Orbit position vector in the
!geodetic reference frame
!(1) Latitude (radians)
!(2) Longitude (radians)
!(3) Altitude (kilometers)

REAL*4 CGMLT_TIME !Calculated CGMLT
!in degrees divided by 15 (0,

24)
INTEGER*4 RETURN_STATUS !Status of calculation

CSC/SD-92/6028
560-7SUG/0290

4–49

For C:

ICSS_COMPUTE_CGMLT(&CGMLT_REQ_TIME, &GEO_ORB_POS,
&CGMLT_TIME, &RETURN_STATUS);

int CGMLT_REQ_TIME[2]
double GCI_ORB_POS[3];
float CGMLT_TIME
int RETURN_STATUS;

4.35.5 Error Conditions
The following fatal errors may be returned to the caller:

ICSS_INV_IDTFYR Invalid year in CGMLT_REQ_TIME
ICSS_INV_IDTFDAY Invalid day in CGMLT_REQ_TIME
ICSS_INV_IDTFMSEC Invalid milliseconds in CGMLT_REQ_TIME
ICSS_COOR_SYS_INV Invalid GEO_ORB_POS element

4.36 ICSS_COMPUTE_EDMLT

4.36.1 Purpose
ICSS_COMPUTE_EDMLT computes the eccentric-dipole magnetic local time and associated parameters.

4.36.2 Description
ICSS_COMPUTE_EDMLT calculates the eccentric-dipole magnetic local time (EDMLT), magnetic latitude
(ED_MLAT) in eccentric-dipole (ED) frame, and L-shell (ED_L) in ED frame at a particular time and

spacecraft position. The calculation is based on the formula ED_L
R

cos (ED_MLAT)2
=

The EDMLT algorithm has been supplied by

Dr. Mauricio Peredo
Hughes STX Corporation
NASA/Goddard Space Flight Center
Building 26/Room G1
Greenbelt, Maryland 20771
peredo@istp1.gsfc.nasa.gov

4.36.3 Interfaces
Input to ICSS_COMPUTE_EDMLT from the KPGS:

MLT_REQ_TIME Date/time for which calculation is made
GEO_ORB_POS Orbit position of spacecraft in geographic coordinate frame

(in km)
Output from ICSS_COMPUTE_EDMLT to the KPGS:

EDMLT Eccentric-dipole magnetic local time
Units = degrees divided by 15 (0, 24)

MAG_LATITUDE Eccentric-dipole magnetic latitude (in degrees)
INV_LATITUDE Invariant latitude (in degrees)
L_SHELL Eccentric-dipole L-shell parameter
STATUS Status of calculation

4.36.4 Calling Sequence
For FORTRAN:

CALL ICSS_COMPUTE_EDMLT(MLT_REQ_TIME, GEO_ORB_POS, EDMLT,
MAG_LATITUDE, INV_LATITUDE, L_SHELL, STATUS)
INTEGER*4 MLT_REQ_TIME(2) !(1) YYYYDDD

!(2) Milliseconds of day

CSC/SD-92/6028
560-7SUG/0290

4–50

REAL*8 GEO_ORB_POS !Orbit position of spacecraft in geographic
!coordinate frame (in km)

REAL*4 EDMLT !Eccentric-dipole magnetic local time
!Units = degrees divided by 15
!(0, 24)

REAL*4 MAG_LATITUDE !Magnetic latitude (in degrees)
REAL*4 INV_LATITUDE !Invariant latitude (in degrees)
REAL*4 L_SHELL !L-shell parameter
INTEGER*4 STATUS !Status of calculation

For C:
ICSS_COMPUTE_EDMLT(&MLT_REQ_TIME, &GEO_ORB_POS, &EDMLT,

&MAG_LATITUDE, &INV_LATITUDE, &L_SHELL, &STATUS)
int MLT_REQ_TIME[2] /*(1) YYYYDDD

 (2) Milliseconds of day*/
double GEO_ORB_POS /*Orbit position of spacecraft in geographic

 coordinate frame (in km)*/
float EDMLT /*Eccentric-dipole magnetic local time

 Units = degrees divided by 15
 (0, 24)*/

float MAG_LATITUDE /*Magnetic latitude (in degrees)*/
float INV_LATITUDE /*Invariant latitude (in degrees)*/
float L_SHELL /*L-Shell parameter*/
int STATUS /*Status of calculation*/

4.36.5 Error Condition
The following warning condition may be detected by this routine:

ICSS_TIME_OUTRANGE Requested date is outside range of SLP file
The following fatal errors may be returned to the caller:

ICSS_SLP_LUN Error getting logical unit for SLP file
ICSS_OPEN_SLP Error opening SLP file
ICSS_ERR_READ_SLP Error reading SLP file
ICSS_SLP_NO_BODY SLP file does not contain body requested
ICSS_TIMCOEF_LUN Error getting a logical unit number for timing

coefficient file
ICSS_EREAD_TIMCOEF_FILE Error reading from timing coefficient file

4.37 ICSS_OPEN_PO_SPINPH (POLAR Support Only)

4.37.1 Purpose
ICSS_OPEN_PO_SPINPH opens the day of data and previous day’s POLAR spin-phase files.

4.37.2 Description
ICSS_OPEN_PO_SPINPH opens both the day of data and the previous day’s POLAR spin-phase files, if
specified. It also reads the start and stop time global attributes of the CDF POLAR spin-phase files from the
two files.

4.37.3 Interfaces
Input to ICSS_OPEN_PO_SPINPH from the POLAR spin-phase header:

POLAR_FILE_HEADER The header for the POLAR spin-phase file

CSC/SD-92/6028
560-7SUG/0290

4–51

Output from ICSS_OPEN_PO_SPINPH to the KPGS:
STATUS The return status from this routine

4.37.4 Calling Sequence
For FORTRAN:

Call ICSS_OPEN_PO_SPINPH (STATUS)
INTEGER*4 STATUS !Status of call

For C:
ICSS_OPEN_PO_SPINPH (&STATUS);

int STATUS; /*Status of call*/

4.37.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_OPEN_PO_SPINPH:

ICSS_DB_GET_PHY_ERR Error obtaining the physical filename from the
database for the logical identifier

ICSS_DB_GET_VERSION_ERR Error obtaining the latest version from the database
for the POLAR spin-phase file

ICSS_NO_FILE_ERR POLAR spin-phase file does not exist
ICSS_SC_AFTER_PR_PSP Invalid secondary file; begins on or after the start

time of the primary file
All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

4.38 ICSS_RET_PO_SPINPH (POLAR Support Only)

4.38.1 Purpose
ICSS_RET_PO_SPINPH extracts POLAR spin-phase data from the POLAR spin-phase files.

4.38.2 Description
ICSS_RET_PO_SPINPH locates and returns the POLAR spin-phase data that corresponds to a given request
time. Linear interpolation is used to estimate the POLAR spin-phase request if a POLAR spin-phase point
does not exist for a specific request time.

4.38.3 Interfaces
Input to ICSS_RET_PO_SPINPH from the KPGS:

REQ_DATE The year, day of year, and time of day of the requested
POLAR spin-phase data

Output from ICSS_RET_PO_SPINPH to the KPGS:
SPIN_PHASE The interpolated spin-phase point for the requested time
AVG_SPIN_RATE The interpolated average spin rate for the requested time
STAN_DEV The standard deviation of the requested time
RETURN_STAT The status of the requested POLAR spin-phase data

4.38.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_PO_SPINPH (REQ_DATE, SPIN_PHASE, AVG_SPIN_RATE,
STAN_DEV, RETURN_STAT)

INTEGER*4 REQ_DATE(2) !(1) YYYYDDD
!(2) milliseconds of day

REAL*4 SPIN_PHASE !In radians

CSC/SD-92/6028
560-7SUG/0290

4–52

REAL*4 AVG_SPIN_RATE !In radians/second
REAL*4 STAN_DEV !In radians/second
INTEGER*4 RETURN_STAT !Status of call

For C:
ICSS_RET_PO_SPINPH (&REQ_DATE, &SPIN_PHASE, &AVG_SPIN_RATE,

&STAN_DEV, &RETURN_STAT);
int REQ_DATE[2]; /*(1) YYYYDDD

 (2) milliseconds of day*/
float SPIN_PHASE; /*In radians*/
float AVG_SPIN_RATE; /*In radians/second*/
float STAN_DEV; /*In radians/second*/
int RETURN_STAT; /*Status of call*/

4.38.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_TIME_OUTRANGE Requested time out of range of files
The following error may be recorded in the system message log by ICSS_RET_PO_SPINPH:

ICSS_NO_FILE_ERR File does not exist
The error returned from this support routine is fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

4.39 ICSS_OPEN_DP_ATT (POLAR Support Only)

4.39.1 Purpose
ICSS_OPEN_DP_ATT opens the day of data and previous day’s despun platform attitude files.

4.39.2 Description
ICSS_OPEN_DP_ATT opens both the day of data and the previous day’s despun platform attitude files, if
specified. It also reads the global attributes of the CDF attitude files from the two files.

4.39.3 Interfaces
Input to ICSS_OPEN_DP_ATT from the despun platform attitude file:

DPATT_HEADER The file label record for the attitude file
Note: This routine derives the despun platform attitude filename from the file date of the level-zero filename.
Output from ICSS_OPEN_DP_ATT to the KPGS:

COMPLETION_STATUS The return status from the routine

CSC/SD-92/6028
560-7SUG/0290

4–53

4.39.4 Calling Sequence
For FORTRAN:

Call ICSS_OPEN_DP_ATT (COMPLETION_STATUS)
INTEGER*4 COMPLETION_STATUS !Message number

For C:
ICSS_OPEN_DP_ATT (&COMPLETION_STATUS);

int COMPLETION_STATUS; /*Message number*/

4.39.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_OPEN_DP_ATT:

ICSS_DB_GET_PHYS_ERR Error obtaining the physical filename from the
database for the logical identifier

ICSS_DB_GET_VERSION_ERR Error obtaining the latest version from the database
for the despun platform attitude file

ICSS_NO_FILE_ERR Despun platform attitude file does not exist
ICSS_SC_AFTER_PR_ATT Invalid secondary attitude file; begins on or after

start time of primary file
ICSS_OPEN_FILE_ERR Error opening the CDF file
ICSS_READTIMES_ERR Error reading the file times from the CDF file
ICSS_INV_TIME_ERR Error obtaining the file times for the CDF file

All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

4.40 ICSS_RET_DP_ATT (POLAR Support Only)

4.40.1 Purpose
ICSS_RET_DP_ATT extracts despun platform attitude data from the despun platform attitude files.

4.40.2 Description
ICSS_RET_DP_ATT locates and returns the despun platform attitude data that corresponds to a given request
time. Linear interpolation is used to estimate the despun platform attitude request if an attitude point does not
exist for a specific request time.

4.40.3 Interfaces
Input to ICSS_RET_DP_ATT from the despun platform attitude file:

REQ_DATE The day of year and time of day of the requested despun
platform attitude data

COOR_SYS The requested coordinate system of the returned despun
platform attitude data

Output from ICSS_RET_DP_ATT to the KPGS:

EUL_ANG The interpolated pitch, roll, and yaw for the requested time
ROTATION_MATRIX The attitude matrix for the euler angles at the requested

time
QUALITY_FLAG The quality of the interpolated data: 0 = good, 1 = bad,

2 = intermediate (i.e., interpolation of one good value and
one bad value)

RETURN_STATUS The return status from the routine

The relationship between the nine-element single-dimension array returned (ROTATION_MATRIX) and the
3-by-3 two-dimensional transformation rotation matrix is as follows:

CSC/SD-92/6028
560-7SUG/0290

4–54

ROTATION_MATRIX(1) = Position (1,1) [row, column]
ROTATION_MATRIX(2) = Position (2,1)
ROTATION_MATRIX(3) = Position (3,1)
ROTATION_MATRIX(4) = Position (1,2)
ROTATION_MATRIX(5) = Position (2,2)
ROTATION_MATRIX(6) = Position (3,2)
ROTATION_MATRIX(7) = Position (1,3)
ROTATION_MATRIX(8) = Position (2,3)
ROTATION_MATRIX(9) = Position (3,3)

4.40.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_DP_ATT (REQ_DATE, COOR_SYS, EUL_ANG, ROTATION_MATRIX,
QUALITY_FLAG, RETURN_STATUS)
INTEGER*4 REQ_DATE(2) !(1) YYYYDDD

!(2) milliseconds of day
CHARACTER*3 COOR_SYS !ORB, GSE, GSM, GCI
REAL*4 EUL_ANG(3) !(1) Pitch in radians

!(2) Roll in radians
!(3) Yaw in radians

REAL*8 ROTATION_MATRIX (9) !Attitude matrix
INTEGER*4 QUALITY_FLAG !Quality flag
INTEGER*4 RETURN_STATUS !Message number

For C:

ICSS_RET_DP_ATT (&REQ_DATE, &COOR_SYS, &EUL_ANG,
&ROTATION_MATRIX, &QUALITY_FLAG, &RETURN_STATUS);

int REQ_DATE[2]; /*(0)
YYYYDDD

(1) milliseconds
of

 day*/
auto $DESCRIPTOR(COOR_SYS,”GSE”); /*ORB, GSE, GSM,

 GCI*/
float EUL_ANG[3]; /*(1) Pitch

 (2) Roll
 (3) Yaw*/

double ROTATION_MATRIX[9]; /*Attitude matrix*/
int QUALITY_FLAG; /*Quality flag*/
int RETURN_STATUS; /*Message number*/

4.40.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_RET_DP_ATT:

ICSS_COOR_SYS_INV Invalid coordinate system
ICSS_TIME_OUTRANGERequested time not in valid range
X_CDF_F_MSG Error reading from CDF file

All errors returned from this support routine, except ICSS_TIME_OUTRANGE, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates an
error, the KPGS application must terminate processing.

CSC/SD-92/6028
560-7SUG/0290

4–55

4.41 ICSS_ACF_TO_GCI (SOHO Support Only)

4.41.1 Purpose
ICSS_ACF_TO_GCI converts an attitude vector in ACF to a vector in the GCI reference frame.

4.41.2 Description
This support routine transforms an attitude vector in the ACF spacecraft reference frame to an attitude vector
in the GCI reference frame.

4.41.3 Interfaces
Input to the ICSS_ACF_TO_GCI from the KPGS:

IDTF_TIME Date/time in internal day time format (IDTF)
GCI_ORB_POSITION The spacecraft orbital position vector
ACF_ATT_VECTOR The attitude vector in ACF

Output from the ICSS_ACF_TO_GCI to the KPGS:
GCI_ATT_VECTOR The spacecraft attitude vector in the GCI reference

frame
TRANSFORM_MATRIX The transformation matrix used to transform a

vector in ACF to a vector in the GCI reference
frame

STATUS The status of the transformation

4.41.4 Calling Sequence
For FORTRAN:

Call ICSS_ACF_TO_GCI (IDTF_TIME, GCI_ORB_POSITION, ACF_ATT_VECTOR,
GCI_ATT_VECTOR, TRANSFORM_MATRIX, RETURN_STATUS)

INTEGER*4 IDTF_TIME(2) !IDTF-formatted date/time
!(1) YYYYDDD
!(2) milliseconds of day

REAL*8 GCI_ORB_POSITION(3) !Orbit position vector
!(x,y,x) at IDTF_TIME

REAL*4 ACF_ATT_VECTOR(3) !Spacecraft attitude vector in
ACF
REAL*4 GCI_ATT_VECTOR(3) !Spacecraft attitude vector in
the !GCI reference frame
REAL*8 TRANSFORM_MATRIX(3,3) !ACF to GCI transformation matrix
INTEGER*4 STATUS !The status of the
transformation

For C:
ICSS_ACF_TO_GCI (&IDTF_TIME, &GCI_ORB_POSITION, &ACF_ATT_VECTOR,

&GCI_ATT_VECTOR, &TRANSFORM_MATRIX, &RETURN_STATUS);
int IDTF_TIME[2]; /*(0) YYYYDDD

 (1) milliseconds of day*/
double GCI_ORB_POSITION[3]; /*GCI orbit position vector*/
float ACT_ATT_VECTOR[3]; /*ACF attitude vector*/
float GCI_ATT_VECTOR[3] /*GCI attitude vector*/
double TRANSFORM_MATRIX[9]; /*ACF to GCI transformation

 matrix*/
int RETUN_STATUS; /*The status of transformation*/

4.41.5 Error Conditions
The following fatal errors may be returned to the caller:

CSC/SD-92/6028
560-7SUG/0290

4–56

ICSS_SLP_LUN Error getting a logical unit for the SLP file
ICSS_OPEN_SLP Error opening the SLP file
ICSS_ERR_READ_SLP Error reading the SLP file
ICSS_SLP_NO_BODY SLP file does not contain the body requested
ICSS_TIMCOEF_LUN Error getting a logical unit number for the timing

coefficients file
ICSS_EREAD_TIMECOEF_FILE Error reading from the timing coefficients file
ICSS_TIME_OUTRANGE Requested date is outside the range of the SLP file

4.42 ICSS_OPEN_SOHO_LZ (SOHO Support Only)

4.42.1 Purpose
This routine opens a SOHO level-zero telemetry file.

4.42.2 Description
This routine opens a SOHO level-zero file so that subsequent calls to the ICSS_RET_SOHO_
PACKETS support routine may read that file. The name of the file is passed to this routine as the first
argument. A status is returned indicating whether the file was opened successfully.

4.42.3 Interfaces
Input to ICSS_OPEN_SOHO_LZ from the KPGS:

SOHO_FILE_NAME Full name (including path and extension) of the file to be
opened

Output from ICSS_OPEN_SOHO_LZ to the KPGS:
STATUS Status of opened file

4.42.4 Calling Sequence
For FORTRAN

Call ICSS_OPEN_SOHO_LZ (%REF(FILE_NAME), %REF(STATUS))
CHARACTER*44 FILENAME
INTEGER*4 STATUS

For C:
ICSS_OPEN_SOHO_LZ (FILE_NAME, STATUS);

char *FILE_NAME;
int *STATUS;

4.42.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_OPEN_SOHO_LZ:

ICSS_OPEN_PR_LZ End opening the primary level-zero file
ICSS_READHDR_PR_LZError reading the primary level-zero file header

All errors returned from this support routine are fatal. The KPGS must check the return status immediately
after every support routine call. If the status indicates an error, the KPGS application must terminate
processing.

4.43 ICSS_RET_SOHO_PACKETS (SOHO Support Only)

4.43.1 Purpose

This routine reads a number of packets from the SOHO level-zero telemetry file and returns
these packets along with quality accounting information to the caller.

CSC/SD-92/6028
560-7SUG/0290

4–57

4.43.2 Description
This routine reads a number of packets from the SOHO level-zero file. The buffer into which the packets are
to be returned is passed as the first argument. This routine returns the entire packet, including the packet
header and spacecraft time field. The quality and accounting information for the packets is returned in a
second buffer, which is passed as the second argument to this routine. There is one 32-bit word (containing
error flags, frames with Reed-Solomon (R-S) correction, and location of packet fill) in this buffer for each
packet that is returned.
The number of packets to be read is passed to this routine as the third argument. The actual number of packets
that were read is returned in the fourth argument. A status is returned indicating whether the file was read
successfully and whether the end of file has been encountered.

4.43.3 Interfaces
Input to ICSS_RET_SOHO_PACKETS from the KPGS:

NO_PACKETS_TO_READ The number of packets to be read from the SOHO
level-zero file

Output from ICSS_RET_SOHO_PACKETS to the KPGS:
PACKET_BUFFER Buffer containing the packets that have been read
QAC_BUFFER Buffer containing 32 bits of packet quality

information for each packet returned
PACKETS_READ Number of packets that are being returned
STATUS Status of packet reads

4.43.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_SOHO_PACKETS (%REF(PACKET_BUFFER), %REF(QAC_BUFFER),
%REF(NO_PACKETS_TO_READ), %REF(PACKETS_READ),
%REF(STATUS))

BYTE PACKET_BUFFER(*) !Buffer for packets
INTEGER*4 QAC_BUFFER(*) !Buffer for quality accounting

!Bits 0-7—Error type flags
!Bits 8-15—Frames with R-S correction
!Bits 16-31—Packet fill start location

INTEGER*4 NO_PACKETS_TO_READ !How many packets to return
INTEGER*4 PACKETS-READ !Number of packets returned
INTEGER*4 STATUS !Status of packet reads

For C:
ICSS_RET_SOHO_PACKETS (PACKET_BUFFER, QAC_BUFFER,

NO_PACKETS_TO_READ, PACKETS_READ, STATUS);
char *PACKET_BUFFER;
int *QAC_BUFFER;

CSC/SD-92/6028
560-7SUG/0290

4–58

int *NO_PACKETS_TO_READ;
int *PACKETS_READ;
int *STATUS;

4.43.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_EOF_PR_LZ End of the file reached reading the primary level-zero file
The following error may be recorded in the system message log by ICSS_RET_SOHO_PACKETS:

ICSS_READ_PR_LZ Error reading the primary level-zero file data record
All errors returned from this support routine, except ICSS_EOF_PR_LZ, are fatal. The KPGS must check the
return status immediately after every support routine call. If the status indicates an error, the KPGS
application must terminate processing.

4.44 ICSS_OPEN_SOHO_HK (SOHO Support Only)

4.44.1 Purpose
This routine opens a SOHO housekeeping telemetry file.

4.44.2 Description
This routine opens a SOHO housekeeping file so that subsequent calls to the ICSS_RET_SOHO_HK support
routine may read that file. The name of the file is passed to this routine as the first argument. A status is
returned indicating whether the file was opened successfully.

4.44.3 Interfaces
Input to ICSS_OPEN_SOHO_HK from the KPGS:

SOHO_FILE_NAME Full name (including path and extension) of the file to
be

opened
Output from ICSS_OPEN_SOHO_HK to the KPGS:

STATUS Status of opened file

4.44.4 Calling Sequence
For FORTRAN:

Call ICSS_OPEN_SOHO_HK (%REF(FILE_NAME), %REF(STATUS))
CHARACTER*44 FILENAME
INTEGER*4 STATUS

For C:
ICSS_OPEN_SOHO_HK (FILE_NAME, STATUS);

char *FILE_NAME;
int *STATUS;

4.44.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_OPEN_SOHO_HK:

ICSS_OPEN_PR_HK Error opening the primary housekeeping file
ICSS_READHDR_PR_HK Error reading the primary housekeeping file header

All errors returned from this support routine are fatal. The KPGS must check the return status immediately
after every support routine call. If the status indicates an error, the KPGS application must terminate
processing.

CSC/SD-92/6028
560-7SUG/0290

4–59

4.45 ICSS_RET_SOHO_HK (SOHO Support Only)

4.45.1 Purpose
This routine reads a number of packets from the SOHO housekeeping file and returns these packets along
with quality accounting information to the caller.

4.45.2 Description
This routine reads a number of packets from the SOHO housekeeping file. The buffer into which the packets
are to be returned is passed as the first argument. This routine returns the entire packet, including the packet
header and spacecraft time field. The quality and accounting information for the packets is returned in a
second buffer, which is passed as the second argument to this routine. There is one 32-bit word (containing
error flags, frames with R-S correction, and location of packet fill) in this buffer for each packet that is
returned.
The number of packets to be read is passed to this routine as the third argument. The actual number of packets
that were read is returned in the fourth argument. A status is returned indicating whether the file was read
successfully and whether the end of file has been encountered.

4.45.3 Interfaces
Input to the ICSS_RET_SOHO_HK from the KPGS:

NO_PACKET_TO_READ The number of packets to be read from the SOHO
housekeeping file

Output from ICSS_RET_SOHO_HK to the PKGS:
PACKET_BUFFER Buffer containing the packets that have been read
QAC_BUFFER Buffer containing 32 bits of packet quality information for

each packet returned

CSC/SD-92/6028
560-7SUG/0290

4–60

PACKETS_READ Number of packets that are being returned
STATUS Status of packet reads

4.45.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_SOHO_HK (%REF(PACKET_BUFFER), %REF(QAC_BUFFER),
%REF(NO_PACKETS_TO_READ), %REF(PACKETS_READ),
%REF(STATUS))

BYTE PACKET_BUFFER(*) !Buffer for packets
INTEGER*4 QAC_BUFFER(*) !Buffer for quality accounting

!Bits 0-7—Error type flags
!Bits 8-15—Frames with R-S correction
!Bits 16-31—Packet fill start location

INTEGER*4 NO_PACKETS_TO_READ !How many packets to return
INTEGER*4 PACKETS_READ !Number of packets returned
INTEGER*4 STATUS !Status of packet reads

For C:
ICSS_RET_SOHO_HK (PACKET_BUFFER, QAC_BUFFER,

NO_PACKETS_TO_READ, PACKETS_READ, STATUS);
char *PACKET_BUFFER;
int *QAC_BUFFER;
int *NO_PACKETS_TO_READ;
int *PACKETS_READ;
int *STATUS;

4.45.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_EOF_PR_HK End of file reached reading the primary housekeeping file
The following error may be recorded in the system message log by ICSS_RET_SOHO_HK:

ICSS_READ_PR_HK Error reading the primary housekeeping file data record
All errors returned from this support routine, except ICSS_EOF_PR_HK, are fatal. The KPGS must check the
return status immediately after every support routine call. If the status indicates an error, the KPGS
application must terminate processing.

4.46 ICSS_OPEN_SOHO_ATT (SOHO Support Only)

4.46.1 Purpose
ICSS_OPEN_SOHO_ATT opens the day of data and previous day’s SOHO attitude files.

4.46.2 Description
ICSS_OPEN_SOHO_ATT opens both the day of data and the previous day’s SOHO attitude files, if
specified. It also reads the start and stop time global attributes of the CDF SOHO attitude files from the two
files.

4.46.3 Interfaces
Input to ICSS_OPEN_SOHO_ATT from the SOHO attitude file:

SOHO_FILE_HEADER The header for the SOHO attitude file
Output from ICSS_OPEN_SOHO_ATT to the KPGS:

STATUS The return status from this routine

4.46.4 Calling Sequence
For FORTRAN:

CSC/SD-92/6028
560-7SUG/0290

4–61

Call ICSS_OPEN_SOHO_ATT (STATUS)
INTEGER*4 STATUS; !Status of call

For C:
ICSS_OPEN_SOHO_ATT (&STATUS);

int STATUS; /*Status of call*/

4.46.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_OPEN_SOHO_ATT:

ICSS_DB_GET_PHY_ERR Error obtaining physical filename from database for
logical identifier

ICSS_DB_GET_VERSION_ERR Error obtaining latest version from database for
SOHO attitude file

ICSS_NO_FILE_ERR SOHO attitude file does not exist
ICSS_SC_AFTER_PR_SA Invalid secondary file; begins on or after the start

time of the primary file
All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

4.47 ICSS_RET_SOHO_ATT (SOHO Support Only)

4.47.1 Purpose
ICSS_RET_SOHO_ATT extracts SOHO attitude data from the SOHO spin-phase files

4.47.2 Description
ICSS_RET_SOHO_ATT locates and returns the SOHO attitude data that corresponds to a given request time.
Linear interpolation is used to estimate the SOHO attitude request if a SOHO attitude point does not exist for
a specific request time.

4.47.3 Interfaces
Input to ICSS_RET_SOHO_ATT from the KPGS:

REQ_DATE The year, day of year, and time of day of the
requested SOHO attitude data

COORD_SYS The desired coordinate system of the SOHO
attitude data

Output from ICSS_RET_SOHO_ATT to the KPGS:
OUTPUT_VECTOR The interpolated pitch, roll, and yaw for the

requested time
STD_DEV The standard deviation of the pitch, roll, and yaw

for the requested time
STATUS The status of the requested SOHO attitude data

4.47.4 Calling Sequence
For FORTRAN:

Call ICSS_RET_SOHO_ATT (REQ_DATE, COORD_SYS, OUTPUT_VECTOR,
STD_DEV, STATUS)

INTEGER*4 REQ_DATE(2) !(1) YYYYDDD
!(2) milliseconds of day

CHARACTER*3 COORD_SYS !(GCI, GSE, GSM, SAT)
REAL*4 OUTPUT_VECTOR(3) !In radians

!(1) Pitch
!(2) Roll
!(3) Yaw

CSC/SD-92/6028
560-7SUG/0290

4–62

REAL*4 STAN_DEV(3) !In radians/second
!(1) Pitch
!(2) Roll
!(3) Yaw

INTEGER*4 STATUS !Status of call
For C:

ICSS_RET_SOHO_ATT (&REQ_DATE, &COORD_SYS, &OUTPUT_VECTOR,
&STD_DEV, &STATUS);

int REQ_DATE[2]; /*(1) YYYYDDD
 (2) milliseconds of day*/

auto $DESCRIPTOR /*(GCI, GSE, GSM, SAT)*/
(COORD_SYS, “GCI”);

float OUTPUT_VECTOR[3]; /*In radians
 (1) Pitch
 (2) Roll
 (3) Yaw*/

float STAN_DEV[3]; /*In radians/second
 (1) Pitch
 (2) Roll
 (3) Yaw*/

int STATUS; /*Status of call*/

4.47.5 Error Conditions
The following warning condition may be detected by this routine:

ICSS_TIME_OUTRANGE Requested time out of range of files
The following errors may be recorded in the system message log by ICSS_RET_SOHO_ATT:

ICSS_NO_FILE_ERR File does not exist
ICSS_COORD_SYS_INV Invalid coordinate system

All errors returned from this support routine, except ICSS_TIME_OUTRANGE, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates an
error, the KPGS application must terminate processing.

4.48 ICSS_UTC_TAI_OFFSET

4.48.1 Purpose
ICSS_UTC_TAI_OFFSET determines the offset between universal time coordinated (UTC) and international
atomic time (TAI).

4.48.2 Description
This routine determines the number of seconds that must be added to TAI to derive UTC on a specific date.

4.48.3 Interfaces
Input to ICSS_UTC_TAI_OFFSET from the KPGS:

TAI_TIME Date on which offset is determined
Output from ICSS_UTC_TAI_OFFSET to the KPGS:

OFFSET Offset (in seconds) between UTC and TAI
times at

DATE (UTC-TAI)
STATUS Status of offset determination

CSC/SD-92/6028
560-7SUG/0290

4–63

4.48.4 Calling Sequences:
For FORTRAN:

Call ICSS_UTC_TAI_OFFSET(TAI_TIME, OFFSET, STATUS)
INTEGER*4 TAI_TIME(2) !(1) = year/day of year (YYYYDDD)

! Year is between 1990 and 2020
! Day is between 1 and 366
!(2) = milliseconds of day is between 0

and
! 86400000

INTEGER*4 OFFSET !Offset (in seconds) between UTC and
TAI

!times at DATE (UTC-TAI)
INTEGER*4 STATUS !SS$_NORMAL if successful;
otherwise

!DATE was invalid
For C:

ICSS_UTC_TAI_OFFSET(&TAI_TIME, &OFFSET, &STATUS)
int TAI_TIME(2) /*(1) = year/day of year (YYYYDDD)

Year is between 1990 and 2020
Day is between 1 and 366*/

/*(2) = milliseconds of day is between 0
and

 86400000*/
int OFFSET /*Offset (in seconds) between UTC and
TAI

 times at DATE (UTC-TAI)*/
int STATUS /*SS$_NORMAL if successful;
otherwise

 DATE was invalid*/

4.48.5 Error Conditions
The following errors may be recorded in the system message log by ICSS_UTC_TAI_OFFSET:

ICSS_INV_IDTFYR Year in MLT_REQ_TIME is invalid
ICSS_INV_IDTFDAY Day in MLT_REQ_TIME is invalid
ICSS_INV_IDTFMSEC Milliseconds in MLT_REQ_TIME are invalid

All errors returned from this routine are fatal. The KPGS application must check the return status immediately
after every support routine call. If the status indicates an error, the KPGS application must terminate
processing.
NOTE: The TDIFF routine that is used to calculate the UTC-TAI offset attempts to calculate the offset
regardless if the requested date is outside the range of the time coefficient file. However, dates outside this
range may not be as accurate as those with the range of the file.

INTEGER*4 TAI_TIME(2) !Date at which offset is to be determined
INTEGER*4 OFFSET !Seconds that must be added to UTC to get TAI
INTEGER*4 STATUS !Return status
REAL*8 R_OFFSET !Offset returned by T_DIFF subroutine
INTEGER*4 YEAR !Year component of TAI_TIME
INTEGER*4 DAY_OF_YEAR !Day of year component of TAI_TIME

CSC/SD-92/6028
560-7SUG/0290

4–64

INTEGER*4 MONTH !Month of year derived from DAY_OF_YEAR
INTEGER*4 DAY !Day of month derived from DAY_OF_YEAR
INTEGER*4 IJUL_DATE !Julian date of TAI_TIME
REAL*8 JUL_DATE !Real*8 copy of IJUL_DATE

4.49 ICSS_GSM_SM

4.49.1 Purpose
ICSS_GSM_SM converts the coordinate systems .

4.49.2 Description
ICSS_GSM_SM converts the coordinate systems between GSM and SM.

4.49.3 Interfaces
Input to ICSS_GSM_SM from the KPGS:

REQ_SYS Coordinate system of transformed vector
SRC_POS Source vector
SRC_POS_TIME Time of source vector

Output from ICSS_GSM_SM to the KPGS:
TRANS_POS Transformed vector
ROTATION_MATRIX Rotation matrix
RETURN_STATUS Status of call

4.49.4 Calling Sequence
For FORTRAN:

Call ICSS_GSM_SM(REQ_SYS, SRC_POS, SRC_POS_TIME, TRANS_POS,
ROTATION_MATRIX, RETURN_STATUS)

INTEGER*4 REQ_SYS !1 = Converts SM vector to GSM vector
!2 = Converts GSM vector to SM vector

REAL*8 SRC_POS(2) !(1) X-component
!(2) Y-component
!(3) Z-component

INTEGER*4 SRC_POS_TIME(2) !(1) YYYYDDD
!(2) Milliseconds of day

REAL*8 TRANS_POS(3) !(1) X-component
!(2) Y-component
!(3) Z-component

REAL*8 ROTATION_MATRIX(9) !Rotation from source to target
!coordinate system, 3x3 row-ordered
!matrix

INTEGER*4 RETURN_STATUS !Return status
For C:

ICSS_GSM_SM(&REQ_SYS, &SRC_POS, &SRC_POS_TIME, &TRANS_POS,
&ROTATION_MATRIX, &RETURN_STATUS)

int REQ_SYS /*1 = Converts SM vector to GSM
vector*/

/*2 = Converts GSM vector to SM
vector*/

double SRC_POS[2] /*(1) X-component*/
/*(2) Y-component*/
/*(3) Z-component*/

CSC/SD-92/6028
560-7SUG/0290

4–65

int SRC_POS_TIME[2] /*(1) YYYYDDD*/
/*(2) Milliseconds of day*/

double TRANS_POS[3] /*(1) X-component*/
/*(2) Y-component*/
/*(3) Z-component*

double ROTATION_MATRIX[9] /*Rotation from source to target
coordinate system, 3x3 row-
ordered matrix*/

int RETURN_STATUS /*Return status*/

4.49.5 Error Conditions
The following fatal errors may be returned to the caller:

SS$_BADPARAM REQ_SYS is something other than 1 or 2
SS$_SSFAIL An error occurred while trying to calculate the tilt angle

4.50 ICSS_TILT_ANGLE

4.50.1 Purpose
ICSS_TILT_ANGLE calculates the tilt angle, which is an angle between the direction of the Earth’s magnetic
field and the direction perpendicular to the Earth’s Sun line.

4.50.2 Description
ICSS_TILT_ANGLE calculates the tilt angle based on the requested time.

4.50.3 Interfaces
Input to ICSS_TILT_ANGLE from the KPGS:

ORB_POS_TIME Request time
Output from ICSS_TILT_ANGLE to the KPGS:

TILT_ANGLE Tilt angle (Rad)
DIPOLE_VECTOR GEO dipole vector
RETURN_STATUS Return status

4.50.4 Calling Sequence
For FORTRAN:

Call ICSS_TILT_ANGLE(ORB_POS_TIME, TILE_ANGLE, DIPOLE_VECTOR,
RETURN_STATUS)

INTEGER*4 ORB_POS_TIME !(1) YYYYDDD
!(2) Milliseconds of day

REAL*8 TILT_ANGLE !Tilt angle (Rad)
REAL*8 DIPOLE_VECTOR(3) !(1) X-component

!(2) Y-component
!(3) Z-component

INTEGER*4 RETURN_STATUS !Return status
For C:

ICSS_GSM_SM(&ORB_POS_TIME, &TILE_ANGLE, &DIPOLE_VECTOR,
&RETURN_STATUS)

int ORB_PO_TIME[2] /*1 = Converts SM vector to GSM
vector

 2 = Converts GSM vector to SM
vector*/

CSC/SD-92/6028
560-7SUG/0290

4–66

double TILT_ANGLE /*Tilt angle (Rad)*/
double DIPOLE_VECTOR[3] /*(1) X-component

 (2) Y-component
 (3) Z-component*/

int RETURN_STATUS /*Return status*/

4.50.5 Error Conditions
This support routine has no error handling.

4.51 ICSS_TSY

4.51.1 Purpose
ICSS_TSY provides an ISTP interface to the Tsyganenko models.

4.51.2 Description
ICSS_TSY computes the total magnetic field and the magnetic field line traces (down to 100 km altitude)
using the Tsyganenko model T89C with kp = 3-, 3, 3+.

4.51.3 Interfaces
Input to ICSS_TSY from the KPGS:

POS_TIME Time and date
GSM_POS GSM position of satellite (Re = Earth radii)
IITRACE Trace option

CSC/SD-92/6028
560-7SUG/0290

4–67

Output from ICSS_TSY to the KPGS:
LN Number of points along fieldline traced northward
LS Number of points along fieldline traced southward
B_GSM GSM magnetic field at satellite point (nT)
H_GSM GSM IGRF field at satellite point (nT)
N_END GSM position of northern footpoint (Re) at 100 km
altitude
S_END GSM position of southern footpoint (Re)
N_TRACE GSM position of points along fieldline traced northward

(Re)
S_TRACE GSM position of points along fieldline traced northward

(Re)
RETURN_STATUS Return status

4.51.4 Calling Sequence
For FORTRAN:
Call ICSS_TSY(POS_TIME, GSM_POS, IITRACE, LN, LS, B_GSM, H_GSM, N_END,

S_END, N_TRACE, S_TRACE, RETURN_STATUS)
INTEGER*4 POS_TIME(2) !(1) YYYYDDD

!(2) Milliseconds of day
REAL*8 GSM_POS(3) !(1) X-component

!(2) Y-component
!(3) Z-component

INTEGER*4 IITRACE != 1, magnetic field at input location
!= 2, magnetic field at input location,
! and northern footpoint
!= 3, magnetic field at input location,
! and southern footpoint
!= 4, magnetic field at input location,
! and both northern and southern
! footpoints

INTEGER*4 LN !Number of points along fieldline traced
!northward

INTEGER*4 LS !Number of points along fieldline traced
!southward

REAL*8 B_GSM(3) !(1) Bx-component
!(2) By-component
!(3) Bz-component

REAL*8 H_GSM(3) !(1) Hx-component (IGRF)
!(2) Hy-component (IGRF)
!(3) Hz-component (IGRF)

CSC/SD-92/6028
560-7SUG/0290

4–68

REAL*8 N_END(3) !(1) X-component
!(2) Y-component
!(3) Z-component

REAL*8 S_END(3) !(1) X-component
!(2) Y-component
!(3) Z-component

REAL*8 N_TRACE(3,800) !(I,K), I = cartesian component(X,Y,Z)
! K = K’th point in trace
!(1:3,1) is same as input position
!(1:3,LN) is same as N_END

REAL*8 S_TRACE(3,800) !(I,K), I = cartesian component (X,Y,Z)
! K = K’th point in trace
!(1:3,1) is same as input position
!(1:3,LS) is same as S_END

INTEGER*4 RETURN_STATUS !Return status
For C:

ICSS_TSY(&POS_TIME, &GSM_POS, &IITRACE, &LN, &LS, &B_GSM, &H_GSM,
&N_END, &S_END, &N_TRACE, &S_TRACE,

&RETURN_STATUS)

int POS_TIME[2] /*(1) YYYYDDD
 (2) Milliseconds of day*/

double GSM_POS[3] /*(1) X-component
 (2) Y-component
 (3) Z-component*/

int IITRACE /*= 1, magnetic field at input location
 = 2, magnetic field at input location,
 and northern footpoint
 = 3, magnetic field at input location,
 and southern footpoint
 = 4, magnetic field at input location,
 and both northern and southern
 footpoints*/

int LN /*Number of points along fieldline
traced

 northward*/
int LS /*Number of points along fieldline
traced

 southward*/
double B_GSM(3) /*(1) Bx-component

 (2) By-component
 (3) Bz-component*/

double H_GSM(3) /*(1) Hx-component (IGRF)
 (2) Hy-component (IGRF)
 (3) Hz-component (IGRF)*/

CSC/SD-92/6028
560-7SUG/0290

4–69

double N_END(3) /*(1) X-component
 (2) Y-component
 (3) Z-component*/

double S_END(3) /*(1) X-component
 (2) Y-component
 (3) Z-component*/

double N_TRACE(3,800) /*(I,K), I = cartesian component(X,Y,Z)
 K = K’th point in trace
 (1:3,1) is same as input position
 (1:3,LN) is same as N_END*/

double S_TRACE(3,800) /*(I,K), I = cartesian component
(X,Y,Z)

 K = K’th point in trace
 (1:3,1) is same as input position
 (1:3,LS) is same as S_END*/

int RETURN_STATUS /*Return status*/

4.51.5 Error Conditions
The following fatal error may be returned to the caller:

SS$_BADPARAM Returned when an invalid TRACE function is requested

4.52 ICSS_POS_VEL_OF_CELESTIAL

4.52.1 Purpose
ICSS_POS_VEL_OF_CELESTIAL retrieves the position and velocity vectors of a celestial body in GCI
coordinates.

4.52.2 Description

This routine returns the position and velocity of a celestial body at a requested time.

4.52.3 Interfaces
Input to ICSS_POS_VEL_OF_CELESTIAL from the KPGS:

ORB_POS_TIME Requested time
CEL_INDEX Index for the celestial body

Output from ICSS_POS_VEL_OF_CELESTIAL to the KPGS:

CEL_POSITION Position of the celestial body (km)
CEL_VELOCITY Velocity of the celestial body (km)
PV_STATUS Status of getting the position and velocity

4.52.4 Calling Sequences
For FORTRAN:

Call ICSS_POS_OF_CELESTIAL (ORB_POS_TIME, CEL_INDEX, CEL_POSITION,
 CEL_VELOCITY, PV_STATUS)

INTEGER*4 ORB_POS_TIME(2) !(1) YYYYDDD
!(2) Milliseconds of day

INTEGER*4 CEL_INDEX !Index for the celestial body
!= 2, Moon
!= 3, Sun

CSC/SD-92/6028
560-7SUG/0290

4–70

REAL*8 CEL_POSITION(3) !Position of the celestial body
(km)
REAL*8 CEL_VELOCITY(3) !Velocity of the celestial body
(km)
INTEGER*4 PV_STATUS !Status of getting position and
velocity

For C:
ICSS_POS_OF_CELESTIAL (&ORB_POS_TIME, &CEL_INDEX, &CEL_POSITION,

&CEL_VELOCITY, &PV_STATUS);

int ORB_POS_TIME(2) /*(1) YYYYDDD
 (2) Milliseconds of day*/

int CEL_INDEX /*Index for celestial body
 = 2, Moon
 = 3, Sun*/

double CEL_POSITION(3) /*Position of the celestial body
(km)*/
double CEL_VELOCITY(3) /*Velocity of the celestial body
(km)*/
int PV_STATUS /*Status of getting the position

and velocity*/

4.52.5 Error Conditions
The following fatal errors may be returned to the caller:

ICSS_SLP_LUN Error getting a logical unit number for the SLP file
ICSS_OPEN_SLP Error opening the SLP file
ICSS_TIMCOEF_LUN Error getting a logical unit number for the Timing

Coefficient file
ICSS_SLP_NO_BODY SLP file does not contain the body requested

CSC/SD-92/6028
560-7SUG/0290

5–1

SECTION 5—NEAR-REAL-TIME KEY PARAMETER
GENERATION

The ISTP CDHF supports the generation of key parameters for NRT telemetry data received
from the Generic Data Capture Facility (GDCF). The NRT processing is performed on a
standalone system and the results are transmitted via network services to the appropriate
destination.
This section describes the NRT data receipt and processing and the special considerations and support
routines for the KPGS to be executed in the NRT environment.
The ISTP CDHF supports the receipt, processing, and distribution of NRT data for the WIND and POLAR
missions. NRT data is received from the GDCF on a dedicated set of computers in the ISTP CDHF.

5.1 NRT Server System
The NRT Server System supports the real-time distribution of WIND and POLAR NRT level-zero data and
NRT key parameter data (future). Client software (see below) is used to connect to the NRT Server System
and request data. Authorized clients will then receive the requested data as it becomes available. The NRT
level-zero and key parameter data is packetized and sent to the client via a TCP socket connection. The
format of the packets is described in the ISTP Data Format Control Document (DFCD) (Reference 5).

5.1.1 NRT Client Routines
The client requires four routines to connect, log in, request, and receive data from the NRT server. These
routines are described below. All client routines are written in C language and may be obtained from the
ISTP CDHF (istp1.gsfc.nasa.gov) via anonymous File Transfer Protocol (FTP). The NRT client routines are
located in the NRT subdirectory. They may also be obtained directly on the ISTP CDHF from the
SYS$PUBLIC:[NRT] directory.

5.1.1.1 RTC_CONNECT

5.1.1.1.1 Purpose

RTC_CONNECT connects the client to the NRT Server System.

5.1.1.1.2 Description

RTC_CONNECT establishes a socket connection between the client and the NRT Server System. Status
messages will be reported to the standard output device.

5.1.1.1.3 Interfaces

Input to RTC_CONNECT from the client program:
SERVER_NAME The address of the NRT server
FPTR Log file pointer

Output from RTC_CONNECT to the client program:
STATUS 0 indicates success

-1 indicates an error in connecting to the server

5.1.1.1.4 Calling Sequence

For C:
STATUS = RTC_CONNECT (SERVER_NAME, FPTR);

int STATUS;
char SERVER_NAME; /* Typically

istp6.gsfc.nasa.gov */
FILE *FPTR; /* Log file pointer*/

CSC/SD-92/6028
560-7SUG/0290

5–2

5.1.1.1.5 Error Conditions

The following error messages may be returned by this routine:
[RTC_CONNECT] host unknown Specified host is unknown
[RTC_CONNECT] error issuing socket command Error returned from socket call; implies

a network or TCP/IP problem
[RTC_CONNECT] error issuing connect command Error returned from connect call;

implies a network or TCP/IP problem
[RTC_CONNECT] unable to connect error Unable to connect to the host; implies a

network or TCP/IP problem

5.1.1.2 RTC_LOGINUSER

5.1.1.2.1 Purpose

RTC_LOGINUSER verifies the account information of the user.

5.1.1.2.2 Description

RTC_LOGINUSER verifies that the specified user has a valid account on the ISTP CDHF system. Status
messages will be reported to the standard output device.

5.1.1.2.3 Interfaces

Input to RTC_LOGINUSER from the client program:
USERNAME The username for the user’s account on the NRT system
PASSWORD The associated account password

Output from RTC_LOGINUSER to the client program:
STATUS 0 indicates success

-1 indicates an error in authorization

CSC/SD-92/6028
560-7SUG/0290

5–3

5.1.1.2.4 Calling Sequence

For C:
STATUS = RTC_LOGINUSER (USERNAME, PASSWORD);

int STATUS;
char USERNAME[32], PASSWORD[256];

5.1.1.2.5 Error Conditions

The following error messages may be returned by this routine:
[RTC_LOGINUSER] error reading username command An error occurred reading the

username string.
[RTC_LOGINUSER] error sending username command An error occurred sending the

username string to or receiving
the username string from the

server.
[RTC_LOGINUSER] error sending password command An error occurred sending the

password string to or receiving
the password string from the

server.
[RTC_LOGINUSER] error from socket_read An error occurred on a socket

read
operation.

[RTC_LOGINUSER] error from socket_write An error occurred on a socket
write

operation.
[RTC_LOGINUSER] error sending WAIT command An error occurred sending the

WAIT
command.

[RTC_LOGINUSER] error sending WTG ACK An error occurred sending the
WTG

acknowledgment.
All of the above errors imply a network or TCP/IP error.

5.1.1.3 RTC_SETPACKET

5.1.1.3.1 Purpose

RTC_SETPACKET selects the data packet types to be received.

5.1.1.3.2 Description

RTC_SETPACKET selects the data packet types to be received. Selections are validated against the user’s
access privileges as specified in the ISTP database. (See the “ISTP Users and Privileges Form” in the
Database Interface System.)
RTC_SETPACKET is called once for each packet type to be selected and then one final time with the packet
type string set to “END” to signal the end of the selection process. The NRT server supports the distribution
of multiple types of packets within the same mission and datatype only. For example, one session may request
level-zero data from multiple instruments on WIND but may not also request data from POLAR or key
parameter data. To receive data packets from multiple missions or from different data types (level-zero or
key parameter) separate sessions must be established.
The valid packet type strings and their sizes are listed in Table 5–1. Note that the system currently provides
data from the WIND and POLAR spacecraft only because these are the missions for which the CDHF
provides real-time support. Requests for data from unsupported missions will generate an error.
Status messages will be reported to the standard output device. A return status of -1 indicates that the
requested packet type is invalid or that the server software is not functional. If this return status is

CSC/SD-92/6028
560-7SUG/0290

5–4

encountered, check the PACKET_STATUS string to see whether the request was “Denied.” If so, verify that
the packet type string is correct and that the access privileges (as listed by the ISTP Users and Privileges
Form in the Database Interface System) for the specified username allow access to this data type.

5.1.1.3.3 Interfaces

Input to RTC_SETPACKET from the client program:
PACKET_TYPE Packet type specification string or ‘END’

Output from RTC_SETPACKET to the client program:
PACKET_STATUS String indicating status of packet request

“Accepted”— Request was accepted
“Denied”— Request was denied
“Remote System Not operational”— The

remote
server software is not running

STATUS 0 indicates success
-1 indicates an error in the packet type

request or
other error

5.1.1.3.4 Calling Sequence

For C:
STATUS = RTC_SETPACKET (PACKET_TYPE, PACKET_STATUS);

int STATUS;
char *PACKET_TYPE;
char *PACKET_STATUS;

5.1.1.3.5 Error Conditions

The following error messages may be returned by this subroutine:
Remote system not operational Message when the server is not operational.

Denied Access to desired data is denied.

CSC/SD-92/6028
560-7SUG/0290

5–5

Table 5–1. NRT Data Packet Specifications

Packet Type Description

Packet Header +
Data Record +

Packet Trailer (bytes)

PO_LZ_CAM CAMMICE level-zero packet 24 + 4552 + 8

PO_LZ_CEP CEPPAD level-zero packet 24 + 8552 + 8

PO_LZ_EFI EFI level-zero packet 24 + 6552 + 8

PO_LZ_HYD HYDRA level-zero packet 24 + 12052 + 8

PO_LZ_MFE MFE level-zero packet 24 + 2800 + 8

PO_LZ_PIX PIXIE level-zero packet 24 + 6300 + 8

PO_LZ_PWI PWI level-zero packet 24 + 10800 + 8

PO_LZ_SCR Spacecraft housekeeping
level-zero packet

24 + 13300 + 8

PO_LZ_TID TIDE level-zero packet 24 + 10800 + 8

PO_LZ_TIM TIMAS level-zero packet 24 + 10552 + 8

PO_LZ_UVI UVI level-zero packet 24 + 14800 + 8

PO_LZ_VIS VIS level-zero packet 24 + 14052 + 8

WI_LZ_3DP 3D-Plasma level-zero packet 24 + 12800 + 8

WI_LZ_EPA EPAC level-zero packet 24 + 6300 + 8

WI_LZ_KON KONUS level-zero packet 24 + 2792 + 8

WI_LZ_MFI MFI level-zero packet 24 + 6552 + 8

WI_LZ_SCR Spacecraft housekeeping
level-zero packet

24 + 17300 + 8

WI_LZ_SMS SMS level-zero packet 24 + 10800 + 8

WI_LZ_SWE SWE level-zero packet 24 + 11552 + 8

WI_LZ_TGR TGRS level-zero packet 24 + 5552 + 8

WI_LZ_WAV WAVES level-zero packet 24 + 11552 + 8

ISTP NRT key parameter
distribution is not yet
implemented

WI_K0_3DP 3D-Plasma NRT key parameters

WI_K0_MFI MFI NRT key parameters

WI_K0_SWE SWE NRT key parameters

CSC/SD-92/6028
560-7SUG/0290

5–6

5.1.1.4 RTC_GETPACKET

5.1.1.4.1 Purpose

RTC_GETPACKET receives packets of data from the NRT server.

5.1.1.4.2 Description

RTC_GETPACKET receives packets of data from the NRT server, placing them in a user supplied buffer.
Level-zero data is buffered by the server and all requested packets are sent at once and appear in the buffer in
the order requested. Key parameter packets are sent individually as they become available. Therefore, for
level-zero data, the supplied buffer must be large enough to hold the total size of the packets requested. For
key parameter data, the buffer need only be large enough to hold the largest packet requested.
Each packet consists of a 24-byte packet header followed by the data (either a level-zero instrument major
frame or a key parameter record) and by an 8-byte packet trailer. (see
Table 5–1).
The end-of-pass is signaled by a packet containing the 9-character string “ENDOFPASS” in the message
body.

5.1.1.4.3 Interfaces

Input to RTC_GETPACKET from the client program:
BUFFER The address of the buffer to receive the data
BUFFER_SIZE The size (in bytes) of the buffer

Output from RTC_GETPACKET to the client program:
STATUS >0 = number of bytes received

-1 = error in receiving the data

5.1.1.4.4 Calling Sequence

For C:
NBYTES = RTC_GETPACKET (&BUFFER, (LONG*) SIZEOF(BUFF));

int NBYTES;
char BUFFER(large enough to hold data packets);

5.1.1.4.5 Error Conditions

The following error/status message may be returned by this subroutine:
Socket read error—socket failed TCP/IP error

5.1.2 Sample Clients
Sample client software is available from istp1.gsfc.nasa.gov via anonymous FTP in the NRT directory or
directly on the CDHF in the SYS$PUBLIC:[NRT] directory.

5.2 NRT Key Parameter Generation
The NRT key parameters are generated from the NRT telemetry data received by the CDHF NRT system
from the GDCF. Telemetry data are received in real time and processed into instrument major frames. The
edit and decommutation process will put the instrument major frames, along with the spacecraft housekeeping
major frames, into a shared memory area on the NRT computer system. Access to the instrument data is made
transparent to the KPGS by providing a support routine interface that mimics the routines used in processing
playback data. Predicted orbit, predicted attitude, and, optionally, the user-supplied calibration and PI
parameter files are also available as input to the NRT key parameter generation.
Key parameters generated on the NRT system are written to files on the CDHF and as a backup are written
locally on the NRT system. The NRT key parameters are not put into CDF. They are created as Institute of
Electrical and Electronics Engineers (IEEE) 754 binary files. Users can be notified via E-mail when key
parameter files have been created, as with playback data. These files are accessible on the CDHF. Currently,
the NRT key parameter generation is supported for the WIND Magnetic Fields Investigation (MFI), Solar
Wind Experiment (SWE), and 3-Dimensional Plasma (3-DP) instruments only.

CSC/SD-92/6028
560-7SUG/0290

5–7

Note: For the Solar Wind Interplanetary Mission (SWIM) investigation, the NRT key parameters for the
WIND MFI, SWE, and 3-D Plasma instruments are transmitted in NRT over the network to designated sites.

5.3 NRT Key Parameter Generation Software
The NRT environment for the KPGS has been made to look and behave as much like the KPGS environment
for playback data as possible. The KPGS developed for the processing of playback data will run in the NRT
environment with minimal change. The KPGS can be designed and coded in such a way that the same code
will run in both environments. There are no level-zero or housekeeping data files, no SFDU headers, and no
CDF key parameter files. No files are cataloged. Decommutated level-zero and housekeeping data are passed
from the NRT task to the KPGS task through global sections. Event flags are used to signal when data are
available. Section 5.2.2 discusses the design considerations for NRT KPGS.

5.3.1 NRT and Playback Environment Support Routine Differences
The following table summarizes the differences between the NRT and playback versions of the KPGS
support routines. There are no changes in the calling sequences of any of the routines. However, some
routines have restrictions placed on their use.

 ICSS Support Routine Playback/NRT Difference
ICSS_KPG_INIT No change in use
ICSS_KPG_TERM No change in use
ICSS_OPEN_ATT No change in use
ICSS_OPEN_LZ No change in use
ICSS_OPEN_ORB No change in use

CSC/SD-92/6028
560-7SUG/0290

5–8

 ICSS Support Routine Playback/NRT Difference
ICSS_OPEN_SD Used for GEOTAIL only
ICSS_RET_ATT No change in use
ICSS_RET_HK Sequential reads only
ICSS_RET_LZ Sequential reads only
ICSS_RET_ORB No change in use
ICSS_RET_SD64 Used for GEOTAIL only
ICSS_RET_SD Used for GEOTAIL only
ICSS_KPG_COMMENT No change in use but comments not logged
ICSS_TRANSF_ORB No change in use
ICSS_TRANSF_ATT No change in use
ICSS_CNVRT_TO_EPOCH No change in use
ICSS_GET_CD No change in use
ICSS_GET_PF No change in use
ICSS_SPINPH_SIRIUS Used for GEOTAIL only
ICSS_GET_REFERENCE_FILES Used for IMP-8 only
ICSS_SPINPH_WIND_LZ Used for WIND only
ICSS_PAYLOAD_TO_GSE No change in use
ICSS_CNVT_FROM_RP No change in use
ICSS_POS_OF_SUN No change in use
ICSS_VELOCITY_TRANS No change in use
ICSS_GCI_TO_GEODETIC No change in use
ICSS_GEODETIC_TO_GCI No change in use
ICSS_SD_BLK_TYP No change in use
ICSS_INDICES No change in use
ICSS_CNVRT_EPOCH_TO_PB5 No change in use
ICSS_TRANSF_TO_MTC No change in use
ICSS_TRANSF_TO_MSPC No change in use
ICSS_COMPUTE_CGMLT No change in use
ICSS_COMPUTE_EDMLT No change in use
ICSS_GET_FILE No change in use
ICSS_OPEN_PO_SPINPH Used for POLAR only
ICSS_RET_PO_SPINPH Used for POLAR only
ICSS_OPEN_DP_ATT Used for POLAR only
ICSS_RET_DP_ATT Used for POLAR only
ICSS_ACF_TO_GCI Used for SOHO only
ICSS_OPEN_SOHO_LZ Used for SOHO only
ICSS_RET_SOHO_PACKETS Used for SOHO only
ICSS_OPEN_SOHO_HK Used for SOHO only
ICSS_RET_SOHO_HK Used for SOHO only
ICSS_OPEN_SOHO_ATT Used for SOHO only
ICSS_RET_SOHO_ATT Used for SOHO only

CSC/SD-92/6028
560-7SUG/0290

5–9

 ICSS Support Routine Playback/NRT Difference
ICSS_NRT_ACTIVE Used by KPGS running in NRT and

playback environments
ICSS_WRITE_3DP_KP For NRT processing only
ICSS_WRITE_MFI_KP For NRT processing only
ICSS_WRITE_SWE_KP For NRT processing only
ICSS_VAX_TO_IEEE For NRT processing only
ICSS_UTC_TAI_OFFSET Used for SOHO only
ICSS_GSM_SM No change in use
ICSS_TILT_ANGLE No change in use
ICSS_TSY No change in use
ICSS_POS_VEL_OF_CELESTIAL No change in use
ICSS_RTC_CONNECT For NRT processing only
ICSS_RTC_LOGINUSER For NRT processing only
ICSS_RTC_GETPACKET For NRT processing only
ICSS_RTC_SETPACKET For NRT processing only

5.3.2 NRT KPGS Design Considerations
Designing code to run in the NRT environment requires that certain considerations be made. This section
describes the things that should be kept in mind when designing and coding the KPGS that is to run in the
NRT environment.

• Writing and reading information from disk files is slow and adds overhead to the
system. Store temporary data arrays in memory rather than writing to disk files.

• In the NRT system, the major frames of level-zero and housekeeping data arrive in real
time. They are presented to the KPGS program through the ICSS_RET_LZ and
ICSS_RET_HK routines as though the data are being read sequentially. It is impossible
to use these routines to read data by time or by offset in the NRT system.

• ICSS_NRT_ACTIVE determines whether the KPGS is running in the playback or NRT
environment. If the KPGS is being designed to run unchanged in both environments,
calling this routine is required and should be done early in the program. The NRT
environment does not support CDF key parameter files; therefore, calls to the CDF
routines must be branched around in the NRT environment. The KPGS must include
logic to check the environment and perform the appropriate subroutine calls to output the
key parameter data as IEEE 754 binary data.

• When in NRT mode, the KPGS program should check the telemetry mode indicator
located in the header of each level-zero data record prior to processing the data.
Transition mode indicates that the spacecraft is changing from one mode to the other and
the data is not associated with any mode. Unknown mode indicates that the mode of the
spacecraft associated with the data in this level-zero data record is not known. [Refer to
Section 3 of the DFCD (Reference 5) for the location and the values associated with the
telemetry mode indicator.] In either case, the KPGS program should probably discard
the use of level-zero data associated with either of these telemetry modes.

• The KPGS is responsible for filling key parameters with “fill” data. On the CDHF, the
CDF key parameter file processing handles the fill data. There are no CDF key
parameter files on the NRT. The user should use the fill data as defined in the include
files ICSS_INC:ICSS_KP_FILL_VALUES.INC and ICSS_INC:ICSS_KP_FILL_
VALUES.H. Copies of these include files can be found in the directory defined by
the logical name KPGS_SUPPORT.

• The KPGS should generate key parameters for each major frame of level-zero data.
• Because the NRT can return a zero absolute time code (ATC) time, the KPGS should

check for this condition and bypass the processing of level-zero data records containing
an ATC time of zero.

CSC/SD-92/6028
560-7SUG/0290

5–10

• The KPGS should always call ICSS_WRITE_3DP_KP, ICSS_WRITE_MFI_KP, or
ICSS_WRITE_SWE_KP with the second argument, END_OF_SESSION, set to 0,
which indicates data. The KPGS should call the termination routine, ICSS_KPG_TERM,
when no more data are indicated (end of pass).

• The KPGS calls ICSS_WRITE_3DP_KP, ICSS_WRITE_MFI_KP, or
ICSS_WRITE_SWE_KP to effect the transfer of a key parameter record from the NRT
to the RDAF. The size of a record must be limited to 512 bytes. The first word (4 bytes)
contains the size of the record, including the first word. The next byte of the record is
reserved for an end-of-pass status. The following common block names are reserved:
NRT_KP_3DP_BUFFER, NRT_KP_MFI_BUFFER, and NRT_KP_SWE_BUFFER.
Figure 5–1 shows a sample structure for a key parameter record.

• The key parameter structure element KP_SIZE in the argument KP_RECORD of the
NRT write routines must accurately contain the number of bytes in the key parameter
record. It is imperative that this value is assigned by the KPGS program before invoking
the write routine ICSS_WRITE_3DP_KP, ICSS_WRITE_MFI_KP, or ICSS_WRITE_
SWE_KP. KP_SIZE is defined by the common blocks listed above.

• The status values returned by the NRT versions of the support routines are denoted by
logical symbols starting with “NRT_”. These logical symbols are not defined in the
ICSS_MESSAGES.INC include file. To check for one of these status values, the KPGS
program must declare the appropriate symbol as “EXTERNAL” (or as a global reference
in C).

• The KPGS program should always call ICSS_RET_LZ to access the level-zero data file
before calling ICSS_RET_HK to access the housekeeping data file.

5.4 NRT-Specific Support Routines
There are several routines required in the NRT environment that are not used in the playback environment.
The ICSS_NRT_ACTIVE support routine should be called by all KPGS
applications that run on both the NRT and CDHF systems. It informs the KPGS applications of the system on
which they are currently running so they can take the appropriate action. Key parameters generated in the
NRT system are not created in CDF; therefore, a set of special routines is provided for writing the key
parameters in the NRT environment. There is a specific write routine for each instrument supported in the
NRT environment. These routines are described in the subsections that follow.

CSC/SD-92/6028
560-7SUG/0290

5–11

C
C NAME: NRT_MFI_KPS
C
C PURPOSE: MFI Key Parameter Definitions
C
C UNIT TYPE: Include File
C
C DEVELOPMENT HISTORY:
C RELEASE/ DESCRIPTION OF
C AUTHOR CHANGE ID DATE CHANGE
C K. Developer V1.0 12/08/93 Initial Development
C

STRUCTURE / nrt_mfi_kps /

C KPGS SR specific files:
INTEGER*4 kp_size !Size of KP structure, in

bytes
BYTE mfi_end_session_flg !Reserved by NRT KPG

C NRT KP common parameters:
REAL*8 Epoch
INTEGER*4 Time_PB5(3)
INTEGER*4 data_qual_flag
INTEGER*4 post_gap_flag
INTEGER*4 mode_flag
REAL*4 xgse_pos
REAL*4 ygse_pos
REAL*4 zgse_pos
REAL*4 rad_distance
REAL*4 xgsm_pos
REAL*4 zgsm_pos

C Instrument-specific data:
INTEGER*4 num_pt_in_avg
REAL*4 magnitude_avg
REAL*4 avg_of_magn
REAL*4 rms
REAL*4 gsm_bx
REAL*4 gsm_by
REAL*4 gsm_bz
REAL*4 gsm_field_lat
REAL*4 gsm_field_long
REAL*4 gse_bx
REAL*4 gse_by
REAL*4 gse_bz
REAL*4 gse_field_lat
REAL*4 gse_field_long

END STRUCTURE

CSC/SD-92/6028
560-7SUG/0290

5–12

Figure 5–1. Sample Structure for Key Parameter Record

CSC/SD-92/6028
560-7SUG/0290

5–13

5.4.1 ICSS_NRT_ACTIVE

5.4.1.1 Purpose

ICSS_NRT_ACTIVE allows the KPGS to determine whether it is running on the NRT or CDHF system.

5.4.1.2 Description

ICSS_NRT_ACTIVE calls a utility to translate the ICSS_NRT_ACTIVE process logical. If the translated
value indicates NRT, set the returned four-character string to “NRT”. If the translated value indicates CDHF,
set the returned four-character string to “CDHF”.

5.4.1.3 Interfaces

Output from ICSS_NRT_ACTIVE to the KPGS:
NRT_OR_CDHF “NRT” indicates NRT

“CDHF” indicates CDHF
“ ” indicates translation failure

RETURN_STATUS Status of translation

5.4.1.4 Calling Sequence

For FORTRAN:
Call ICSS_NRT_ACTIVE (NRT_OR_CDHF, RETURN_STATUS)

CHARACTER*4 NRT_OR_CDHF !NRT or CDHF or failure
INTEGER*4 RETURN_STATUS

For C:
ICSS_NRT_ACTIVE (&NRT_OR_CDHF_DESC, &RETURN_STATUS);

char NRT_OR_CDHF[5];
auto $DESCRIPTOR (NRT_OR_CDHF_DESC, NRT_OR_CDHF);

/*NRT or CDHF or failure*/
int RETURN_STATUS;

5.4.1.5 Error Conditions

The following errors may be recorded in the system message log by ICSS_NRT_ACTIVE:
NRT_GN_TRANS_ERR Error translating system logical
NRT_KP_INVALID_LOG Invalid value found in ICSS_NRT_ACTIVE

All errors returned from this support routine are fatal. The KPGS application must check the return status
immediately after every support routine call. If the status indicates an error, the KPGS application must
terminate processing.

5.4.2 ICSS_WRITE_3DP_KP

5.4.2.1 Purpose

ICSS_WRITE_3DP_KP puts the 3-D Plasma key parameter data into shared memory for the transfer task.

5.4.2.2 Description

ICSS_WRITE_3DP_KP reads an event flag to determine whether the transfer task has moved the last 3-D
Plasma data record out of the global section. If it has not, then an error message is logged. A new 3-D Plasma
data record is moved into the global section and an event flag is set to let the transfer task know another data
record is available. This routine checks whether previously generated data have been transferred. If they
have not, an error message is logged before writing out new data.

5.4.2.3 Interfaces

Input to ICSS_WRITE_3DP_KP from the KPGS:

CSC/SD-92/6028
560-7SUG/0290

5–14

KP_RECORD 3-D Plasma key parameter data record
END_OF_SESSION End-of-session flag

Output from ICSS_WRITE_3DP_KP to the KPGS:
RETURN_STATUS The return status from this routine

Output from ICSS_WRITE_3DP_KP to the transfer task:
KP_3DP_RECORD 3-D Plasma key parameter data record

5.4.2.4 Calling Sequence

For FORTRAN:
Call ICSS_WRITE_3DP_KP (KP_RECORD, END_OF_SESSION, RETURN_STATUS)

RECORD KP_RECORD !3-D Plasma KP data record
INTEGER*2 END_OF_SESSION !0 = Data (The only value for
END_OF_SESSION

!that the KPGS should use is 0.)
!1 = No more data

INTEGER*4 RETURN_STATUS !Returned status, SS$_NORMAL = Successful
For C:

ICSS_WRITE_3DP_KP (&KP_RECORD, &END_OF_SESSION, &RETURN_STATUS);
struct KP RECORD; /*3-D Plasma KP data record*/
short END_OF_SESSION; /*0 = Data (The only value for
END_OF_SESSION

 that the KPGS should use is 0.)
 1 = No more data */

int RETURN_STATUS; /*Returned status, SS&_NORMAL =
Successful*/

5.4.2.5 Error Conditions

The following warning condition may be detected by this routine:
NRT_GN_DROPPED_DATA Transfer task has not cleared event flag, meaning

that it did not “finish” reading the 3-D Plasma
KP

record from the global section (not returned to
KPGS)

The following errors may be recorded in the system message log by ICSS_WRITE_3DP_KP:
NRT_GN_READ_EF_ERR Error reading event flag
NRT_GN_SET_EF_ERR Error setting event flag

All errors returned from this support routine, except NRT_GN_DROPPED_DATA, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates an
error, the KPGS application must terminate processing.

5.4.3 ICSS_WRITE_MFI_KP

5.4.3.1 Purpose

ICSS_WRITE_MFI_KP puts the MFI key parameter data into shared memory for the transfer task.

5.4.3.2 Description

ICSS_WRITE_MFI_KP reads an event flag to determine whether the transfer task has moved the last MFI
data record out of the global section. If it has not, then an error message is logged. A new MFI data record is
moved into the global section and an event flag is set to let the transfer task know another data record is
available. This routine checks whether previously generated data have been transferred. If they have not, an
error message is logged before writing out new data.

CSC/SD-92/6028
560-7SUG/0290

5–15

5.4.3.3 Interfaces

Input to ICSS_WRITE_MFI_KP from the KPGS:
KP_RECORD MFI key parameter data record
END_OF_SESSION End-of-session flag

Output from ICSS_WRITE_MFI_KP to the KPGS:
RETURN_STATUS The return status from this routine

Output from ICSS_WRITE_MFI_KP to the transfer task:
KP_MFI_RECORD MFI key parameter data record

CSC/SD-92/6028
560-7SUG/0290

5–16

5.4.3.4 Calling Sequence

For FORTRAN:
Call ICSS_WRITE_MFI_KP (KP_RECORD, END_OF_SESSION, RETURN_STATUS)

RECORD KP_RECORD !MFI KP data record
INTEGER*2 END_OF_SESSION !0 = Data (The only value for
END_OF_SESSION

!that the KPGS should use is 0.)
!1 = No more data

INTEGER*4 RETURN_STATUS !Returned status, SS$_NORMAL = Successful
For C:

ICSS_WRITE_MFI_KP (&KP_RECORD, &END_OF_SESSION, &RETURN_STATUS);
struct KP_RECORD; /*MFI KP data record*/
short END_OF_SESSION; /*0 = Data (The only value for

 END_OF_SESSION that the KPGS
 should use is 0.)
 1 = No more data */

int RETURN_STATUS; /*Returned status, SS&_NORMAL =
 Successful*/

5.4.3.5 Error Conditions

The following warning condition may be detected by this routine:
NRT_GN_DROPPED_DATA Transfer task has not cleared event flag, meaning

that it did not “finish” reading the MFI KP
record

from the global section (not returned to KPGS)
The following errors may be recorded in the system message log by ICSS_WRITE_MFI_KP:

NRT_GN_READ_EF_ERR Error reading event flag
NRT_GN_SET_EF_ERR Error setting event flag

All errors returned from this support routine, except NRT_GN_DROPPED_DATA, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates an
error, the KPGS application must terminate processing.

5.4.4 ICSS_WRITE_SWE_KP

5.4.4.1 Purpose

ICSS_WRITE_SWE_KP puts the SWE key parameter data into shared memory for the transfer task.

5.4.4.2 Description

ICSS_WRITE_SWE_KP reads an event flag to determine whether the transfer task has moved the last SWE
data record out of the global section. If it has not, then an error message is logged. A new SWE data record is
moved into the global section and an event flag is set to let the transfer task know another data record is
available. This routine checks whether previously generated data have been transferred. If they have not, an
error message is logged before writing out new data.

5.4.4.3 Interfaces

Input to ICSS_WRITE_SWE_KP from the KPGS:
KP_RECORD SWE key parameter data record
END_OF_SESSION End-of-session flag

Output from ICSS_WRITE_SWE_KP to the KPGS:
RETURN_STATUS The return status from this routine

Output from ICSS_WRITE_SWE_KP to the transfer task:

CSC/SD-92/6028
560-7SUG/0290

5–17

KP_SWE_RECORD SWE key parameter data record

5.4.4.4 Calling Sequence

For FORTRAN:
Call ICSS_WRITE_SWE_KP (KP_RECORD, END_OF_SESSION, RETURN_STATUS)

RECORD KP_RECORD !SWE KP data record
INTEGER*2 END_OF_SESSION !0 = Data (The only value for
END_OF_SESSION

!that the KPGS should use is 0.)
!1 = No more data

INTEGER*4 RETURN_STATUS !Returned status, SS$_NORMAL = Successful
For C:

ICSS_WRITE_SWE_KP (&KP_RECORD, &END_OF_SESSION, &RETURN_STATUS);
struct KP_RECORD; /*SWE KP data record*/
short END_OF_SESSION; /*0 = Data (The only value for

 END_OF_SESSION that the KPGS
 should use is 0.)
 1 = No more data */

int RETURN_STATUS; /*Returned status, SS$_NORMAL =
 Successful*/

5.4.4.5 Error Conditions

The following warning condition may be detected by this routine:
NRT_GN_DROPPED_DATA Transfer task has not cleared event flag, meaning

that it did not “finish” reading the SWE KP
record

from the global section (not returned to KPGS)

CSC/SD-92/6028
560-7SUG/0290

5–18

The following errors may be recorded in the system message log by ICSS_WRITE_SWE_KP:
NRT_GN_READ_EF_ERR Error reading event flag
NRT_GN_SET_EF_ERR Error setting event flag

All errors returned from this support routine, except NRT_GN_DROPPED_DATA, are fatal. The KPGS
application must check the return status immediately after every support routine call. If the status indicates an
error, the KPGS application must terminate processing.

5.4.5 ICSS_VAX_TO_IEEE

5.4.5.1 Purpose

ICSS_VAX_TO_IEEE performs data format conversion from VAX/virtual memory storage (VMS)
representation to IEEE representation.

5.4.5.2 Description

This support routine invokes a CDF function to perform data format conversion. For the NRT support, the
KPGS data need to be converted to IEEE format before they are written to the shared memory for the transfer
task. In other words, ICSS_VAX_TO_IEEE is called before ICSS_WRITE_3DP_KP,
ICSS_WRITE_MFI_KP, or ICSS_WRITE_SWE_KP.
Note that the KPGS program that uses the ICSS_VAX_TO_IEEE routine must be linked with the latest CDF
library (i.e., CDF Version 2.3 or higher).
It should be further noted that ICSS_VAX_TO_IEEE should NOT be used to convert the NRT specific fields
in the output buffer to the IEEE format. These fields include the field containing the size of the KP structure in
bytes and the field containing the end-of-pass flag. The size of the KP structure is located in bytes 1-4. The
end-of-pass flag is in byte 5.

5.4.5.3 Interfaces

Input to ICSS_VAX_TO_IEEE from the KPGS:
BUFFER Array containing data to be converted
DATA_TYPE CDF data type in buffer

Note: CDF include file must be included in the KPGS program
to

access the CDF data type.
NUM_ELEM Number of data elements in buffer

Output from ICSS_VAX_TO_IEEE to the KPGS:
BUFFER Array containing converted data

5.4.5.4 Calling Sequence

This support routine is used for all CDF types of data conversions.
The following two examples demonstrate how this routine should be called.

CSC/SD-92/6028
560-7SUG/0290

5–19

For FORTRAN:
Call ICSS_VAX_TO_IEEE (BUFFER, %VAL(DATA_TYPE), %VAL(NUM_ELEM))

REAL*4 BUFFER(NUMELEMS) !Suppose VAX REAL*4 data
conversion is

!desired; NUMELEMS should be
replaced

!with number of data elements to be
!converted

INTEGER*4 DATA_TYPE !Assign CDF_REAL4 to this input
argument

!in the KPGS program
INTEGER*4 NUM_ELEM !Number of data elements to be
converted

For C:
ICSS_VAX_TO_IEEE (BUFFER, DATA_TYPE, NUM_ELEM);

double BUFFER[NUMELEMS]; /*Suppose VAX REAL*8 data conversion is
 desired; NUMELEMS should be replaced

with
 number of data elements to be converted*/

long DATA_TYPE; /*Assign CDF_REAL8 to this input argument in the
 KPGS program*/

long NUM_ELEM; /*Number of data elements to be converted*/

5.4.5.5 Error Conditions

This support routine has no error path.

5.5 NRT KPGS Testing
The KPGS program that is designed to use the NRT capabilities may be tested using simulators provided for
this purpose on the CDHF. These simulators replace the NRT decommutation processes that would transfer
telemetry to the KPGS programs in the operational environment. They provide a source of telemetry whose
volume and rate are controlled with user-specified parameters. Also provided is a simulator that accepts the
key parameter output data from the KPGS program and writes these data to a log file where they may be
inspected. Orbit, attitude, calibration, and PI parameter files are accessed in the same manner as with the
KPGS program running in the CDHF environment.
The scenario for testing the KPGS program in the NRT environment is as follows:

1. Using one of the VAX editors, create NAMELIST files that control the data rate and
volume of the instrument and housekeeping (optional) telemetry.

2. Create a command file that executes the CDHF simulators and the KPGS program.
3. Execute a CDHF-supplied command file to initialize the NRT environment.
4. Execute the command file created in step 2.
5. Inspect the key parameter and log files created during the test.

The following subsections explain each of these steps in detail.

5.5.1 Creating the NAMELIST Files
Instrument-specific simulators are used to supply the instrument and housekeeping telemetry to the KPGS
program. Each uses a FORTRAN NAMELIST file to control the amount and rate of the telemetry. The name
of the file that controls the instrument telemetry simulator is LZ_NAMELIST.DAT, and the name of the
housekeeping telemetry simulator is HK_NAMELIST.DAT. Both must exist in the directory from which the
test is to be run. The format of these two files are identical, each being an American Standard Code for
Information Interchange (ASCII) text file containing three parameters: START_DELAY, FRAME_DELAY,
and NUMBER_MAJ_FRMS. START_DELAY defines the number of seconds that the simulator waits before
sending the first frame. FRAME_DELAY is the number of seconds that the simulator waits between frame

CSC/SD-92/6028
560-7SUG/0290

5–20

transmissions. NUMBER_MAJ_FRMS is the number of major frames that the simulator will transfer to the
KPGS program before terminating. A sample of the NAMELIST file is as follows:

$CONTROL NUMBER_MAJ_FRMS = 10, START_DELAY = 10.0,
 FRAME_DELAY = 2.0
$END

This example would cause the simulator to transmit 10 major frames, waiting 10 seconds before the first
frame, and 2 seconds between each subsequent pair of frames. The “$” which starts the file must be in
column 2. Normally, the NAMELIST files for the instrument and housekeeping simulators would be identical
because equal data rates and volumes would be normal. However, by varying these parameters, certain
anomalous conditions can be simulated.

5.5.2 Creating the NRT Command File
The command file that executes the KPGS test sequence is a text file containing VMS commands that define
the support files to be used during the test, that execute the simulators as detached processes, and that run the
KPGS program. An example of this command file follows.
Note: A machine-readable version of this command file is available in KPGS_IT:[KPGSIT.NRT.COM]
MFI_NRT_SAMPLE_RUN.COM.
$ DELETE *MFI*.out;*
$ DELETE MH.DAT;*
$ DELETE OPS.DAT;*
$ DELETE *MFI*.ERR;*
$ DELETE *MFI*.LOG;*
$
$ DEFINE NRT_ORB_FILE WIND_ORB:WI_OR_DEF_19920921_V02
$ DEFINE NRT_ATT_FILE WIND_ATT:WI_AT_DEF_19920921_V01
$ DEFINE C001 KPG_DATA:GE_CD_EPI_19910930_V01.DAT
$ DEFINE NRT_PARM_FILE KPG_DATA:WI_PF_MFI_19020921.DAT
$ DEFINE USR_MSG_FILE MFI_NRT_SAMPLE:LOG
$
$! Run the simulated mailboxes
$ @CDHF_DEV:[sdev.com]sim_DEF
$ @CDHF_DEV:[sdev.com]sim_ops
$ @CDHF_DEV:[sdev.com]sim_mh
$
$ wait 00:00:02
$
$! Run the detached process that sets up the NRT globals
$
$ RUN/DETACH EXE_DIR:CREATE_GLOBALS_WIND/-
PROCESS_NAME=NRT_WIND_GBLS/OUT=WIND.OUT/error=WIND.ERR
$
$! Wait for the globals to be defined
$
$ wait 00:00:02
$
$! Run the detached process that will provide level-zero data to the KPGS program
$
$ RUN/DETACH EXE_DIR:PUT_MFI_MF/PROCESS_NAME=PUT_HK/INPUT=WI_-
LZ_SCR_19920921_V01.DAT/OUT=WIND_MFI_MF.OUT/error=wind_MFI_HK.ERR
$
$! Run the detached process that will accept the KPGS program output data
$
$ RUN/DETACH EXE_DIR:TRANSPORT_MFI/PROCESS_NAME=TRANSPORT_MFI/-
OUT=TRANSPORT_MFI.OUT/error=TRANSPORT_MFI.ERR
$! SET NOON

CSC/SD-92/6028
560-7SUG/0290

5–21

$! SET PROCESS /PRIVILEGE=NOALL
$! SET PROCESS /PRIVILEGE=TMPMBX
$
! Run the KPGS program
$ RUN EXE_DIR:MFI_NRT_SAMPLE.EXE
$
$ Stop the detached processes
$ STOP NRT_WIND_GBLS
$ STOP PUT_MFI_MF
$ STOP PUT_MFI_HK
$ STOP TRANSPORT_MFI
$ STOP KPGSIT_1
$ STOP KPGSIT_2
$ SET ON
$EXIT
The first five commands define logical symbols which determine the names of the orbit, attitude, calibration,
PI parameter, and user message files that will be used during the test. Each of these lines should be included,
and any files that are not being used should be left blank. The command(s) that selects the calibration file(s)
uses the same symbol(s) as used for the instrument component argument passed to the ICSS_GET_CD support
routine (see Section 4.18 of this document) in the KPGS program. The filenames used in these commands are
physical filenames and should include the file directory path and extension.
The next three commands run the simulated mailboxes that are used by all KPGS programs. Following these
is the command to run the NRT process that defines the global areas used by the NRT processes. This
process must be run prior to the execution of any of the NRT simulators. After this process is executed, the
command file waits 2 seconds to allow the globals to be established before invoking the simulators.
The next command executes the level-zero telemetry simulator as a detached process. There are separate
telemetry simulators provided for each instrument. The name of the simulator is PUT_<instrument>_LZ,
where <instrument> is the three-character identifier (e.g., MFI, SWE, 3DP) for the instrument whose KPGS
program is being tested. For instance, the simulator for the WIND MFI instrument used in this example is
named PUT_MFI_LZ.
The INPUT Qualifier in this command must be assigned the name of the level-zero telemetry file that shall be
used as a source of the telemetry. This can be any valid CDHF playback-mode telemetry file. The OUTPUT
Qualifier is assigned the name of a log file to which the simulator writes any system messages indicating
anomalies in its processing.
The next command executes the housekeeping telemetry simulator. This line can be omitted if the
housekeeping data are not used by the KPGS program. Here again, the INPUT Qualifier is assigned the name
of a valid playback telemetry file, this time one containing housekeeping telemetry. The OUTPUT Qualifier is
again assigned the name of a log file for the simulator.
The next command executes the simulator that accepts the key parameter data from the KPGS program and
logs them to a file. There are separate simulators provided for each instrument. The name of this simulator is
TRANSPORT_<instrument>, where <instrument> is the three-character identifier for the instrument whose
KPGS program is being tested. The simulator in the example is named TRANSPORT_MFI. The OUTPUT
Qualifier in this command is assigned the name of the file to which the key parameter data are to be logged.
The next command executes the KPGS program, which will run until the end of the level-zero or
housekeeping data. Following the execution of the KPGS program, the command file stops any simulator
processes that might still be running. It then stops the simulated mailboxes. The commands to stop the
mailboxes in the example must be changed to reflect the account under which the test is being run (see
example).

5.5.3 Establishing the NRT Environment
Next a CDHF-supplied command file must be run to establish the NRT environment. This is done by typing
@KPGS_IT : [KPGSIT.NRT.COM] nrt_def. This command file must be invoked once at each logon session.
(KPGS_DEV should have been executed before the execution of this command file.)

CSC/SD-92/6028
560-7SUG/0290

5–22

5.5.4 Executing the KPGS Program
The KPGS command file may now be invoked to test the KPGS program. The program may be linked with or
without the debugger. However, since the simulators send data at a fixed rate, it may not be possible to avoid
loss of data messages when running the debugger.
The program should run until one of the telemetry simulators has exhausted its data. Once this occurs, the
simulator should signal the KPGS program that the end of a pass has occurred. This is evidenced in the
program as an end-of-file status from the ICSS_RET_LZ or ICSS_RET_HK support routine. The KPGS
program upon detecting this condition should then perform a normal termination. This includes calling the
ICSS_KPGS_TERM support routine.

5.5.5 Inspecting the Test Results
The user message and key parameter files can be inspected. The names of these files are defined in the
command file. If any problems have occurred during the test, the log files for the simulators, as well as the
simulated system operator log (name mh.dat), are available for inspection.

SLP file does not contain the body requested

CSC/SD-92/6028
560-7SUG/0290

6–1

SECTION 6—SPECIAL PROGRAMMING NOTES

6.1 B Field Major Frame Averages
Components required to determine the B field major frame averages are in the POLAR housekeeping data
file. The four elements required to calculate the B field major frame averages for the Magnetic Field
Explorer (MFE) magnetometer and their locations in the POLAR housekeeping data are described below.

• MNTSCALE (8-bit binary integer used for scaling the vectors) in byte 12, minor
frame 63

• BX (16-bit, two’s complement uncalibrated integer vector component) in bytes 11 and
12, minor frame 87

• BY (16-bit, two’s complement uncalibrated integer vector component) in bytes 11 and
12, minor frame 99

• BZ (16-bit, two’s complement uncalibrated integer vector component) in bytes 11 and
12, minor frame 111

To access the MFE magnetometer data from the POLAR spacecraft housekeeping file, a user would call the
ICSS routine to read in the spacecraft housekeeping file. The user would then use his/her code for extracting
the MFE magnetometer data. An example of such code is given in Figure 6–1.
The magnitude range of the raw BX, BY, BZ values could extend to ±32767 data numbers (dn) depending on
the instrument setup (sensor and scale factor). Under normal operations, the goal is to maintain less than full-
scale values (i.e., ±25000 dn).
The detail format of the POLAR housekeeping data file is shown in Section 3.3 of the Data Format Control
Document (DFCD) Between the International Solar-Terrestrial Physics (ISTP) Mission Operations and
Systems Development Division (MOSDD) Ground Data Processing System and the ISTP Mission
Investigators (Reference 5).
To compute the B components in nanoteslas (nT), the following operations are performed using floating-point
arithmetic:

• Bxcal = Bx av/(Cnts/nT)

• Bycal = By av/(Cnts/nT)

• Bzcal = Bz av/(Cnts/nT)
These major-frame-averaged (9.2 seconds) data are despun, corrected vector components in spacecraft
coordinates.

6.2 Status of Instruments
The spacecraft housekeeping data files for both WIND and POLAR contain the status of all of the instruments.
The location of this information can be obtained from the DFCD (Reference 5).

CSC/SD-92/6028
560-7SUG/0290

6–2

C
C Example Code for Extracting MFE Data
C From the POLAR SPACECRAFT Housekeeping Data
C

subroutine get_polar_mag_data (major_frame, mntscale, bx, by, bz)
byte major_frame(*) !Buffer containing major frame
integer*4 mntscale !Magnetometer scale factor
integer*4 bx, by, bz !Magnetometer vector

integer*4 frame_no, !Minor frame number
index, !Index into major frame buffer
frame_size/9/, !Minor frame size
iword !Equivalenced variable used to transfer bytes

!to vector

byte bword (4) !Equivalenced array

equivalence (iword, bword(1))

C
C Get the MNTSCALE value out of byte 8 (array index 9) of minor frame 63
C

frame_no = 63
index = 300 + (frame_no*frame_size) + 9

bword(1) = major_frame (index)
bword(2) = 0
mntscale = word

C
C Get the BX value out of bytes 7 and 8 of minor frame 87
C

frame_no = 87
index = 300 + (frame_no*frame_size) + 8

bword(2) = major_frame (index)
bword(1) = major_frame (index + 1)
bx = iword

C
C Get the BY value out of bytes 7 and 8 of minor frame 99

Figure 6–1. Code To Extract MFE Magnetometer Data From POLAR
Housekeeping Data File (1 of 2)

CSC/SD-92/6028
560-7SUG/0290

6–3

C
frame_no = 99
index = 300 + (frame_no*frame_size) + 8

bword(2) = major_frame (index)
bword(1) = major_frame (index + 1)
by = iword

C
C Get the BZ value out of bytes 7 and 8 of minor frame 111
C

frame_no = 111
index = 300 + (frame_no*frame_size) + 8

bword(2) = major_frame (index)
bword(1) = major_frame (index + 1)
bz = iword

return
end

Figure 6–1. Code To Extract MFE Magnetometer Data From POLAR
Housekeeping Data File (2 of 2)

6.3 Magnetic Local Time
Magnetic time is essentially a longitude coordinate. Two magnetic local time systems are proposed for use
within ISTP: the eccentric dipole magnetic local time (EDMLT) system and the corrected geomagnetic local
time (CGMLT) system.

6.3.1 EDMLT
This section discusses the advantages and disadvantages of this system.

6.3.1.1 Advantages

The eccentric dipole model produces an orthogonal system. It is reversible, retains spatial information, can
be used in mathematical modeling, and can form the basis for field line tracing. It can be based on any model
field, e.g., International Geophysical Reference Field 1990, the adopted ISTP field model. It can be
converted simply to geodetic coordinates and hence to any other system, e.g., centered dipole, Polar Anglo-
American Conjugate Experiment, corrected geomagnetic. The conversion algorithm is easily portable. It has
proven to be moderately useful for ordering ionospheric phenomena.

6.3.1.2 Disadvantages

Beyond the ionosphere, it becomes a mere label that does, however, provide a measure of the position
relative to the Earth-Sun line. Its intended use is for

• High-latitude particle data

• Comparison with existing databases

CSC/SD-92/6028
560-7SUG/0290

6–4

• Studies where differentiability or integrability of the coordinate system is important

• Doing modeling

6.3.2 CGMLT
This section discusses the advantages and disadvantages of this system.

6.3.2.1 Advantages

This system currently is used by the Dual Auroral Radar Network (DARN) community and is the chosen
coordinate system for SUPERDARN. It is suitable for studying low-altitude conjugate phenomena and has
been proven to be quite useful for ordering and comparing ionospheric phenomena. It can be converted easily
to geodetic coordinates and hence to any other system, e.g., attitude-adjusted corrected geomagnetic
coordinate, eccentric dipole, centered dipole. The conversion algorithm is easily portable.

6.3.2.2 Disadvantages

CGMLT is not an orthogonal system. It requires several sets of constants for the range of altitudes to be
covered and an interpolation scheme for intermediate altitudes. Extension to very high altitudes becomes
dependent on the model used for field line tracing.
The information in these subsections is an abstract from the ISTP KPGS standards and convention document
(Reference 1). More detail can be found in Appendix H, pages H-5 and
H-6, of Reference 1.

CSC/SD-92/6028
560-7SUG/0290

A–1

APPENDIX A—SAMPLE TEST PROGRAMS

There are currently nine sample KPGS programs. All sample programs reside on the CDHF in the
SYS$PUBLIC:[KPGS] directory.
For each sample program, a command file will compile and link the program. These command files are
named

“program_name”_compile.com
and

“program_name”_link.com
Note that on return from every support routine call, the KPGS must check the return or completion status for
errors. Although support routines record errors in the ISTP CDHF system message log, the KPGS
applications are responsible for maintaining processing control.
Table A–1 briefly describes the sample programs.

Table A–1. Sample Programs

Program Name Language Description
F_SAMPLE FORTRAN Sample FORTRAN KPGS that uses level-zero,

housekeeping, orbit, attitude, and calibration
data files

C_SAMPLE C Sample C KPGS that uses level-zero,
housekeeping, orbit, attitude, and calibration
data files

S_SAMPLE C Sample C KPGS that uses a SIRIUS data file
FS_SAMPLE FORTRAN Sample FORTRAN KPGS that uses a SIRIUS

data file
S64_SAMPLE C Sample C KPGS that uses a SIRIUS data file

via the ICSS_RET_SD64 support routine
MFI_NRT_SAMPLE FORTRAN Sample FORTRAN KPGS that uses the NRT

system for the WIND MFI instrument
SWE_NRT_SAMPLE C Sample C KPGS that uses the NRT system for

the WIND SWE instrument
SOHO_FOR_SAMPLE FORTRAN Sample FORTRAN KPGS program

demonstrating the use of the SOHO support
routines

SOHO_C_SAMPLE C Sample C KPGS program demonstrating the
use of the SOHO support routines

CSC/SD-92/6028
560-7SUG/0290

B–1

APPENDIX B—SAMPLE CDF SKELETON TABLES

The following are sample skeleton tables for SOHO’s Charge, Element, and Isotope Analysis System
(CELIAS) and Energetic and Relativistic Nuclei and Electron (ERNE) Experiment key parameter files:

SO_K0_CELS_V01.SKELETON_TABLE
SO_K0_ERNE_V01.SKELETON_TABLE

These sample skeleton tables illustrate the use of the required CDF attributes, r- and z-variables, and
optional attributes and variables.
All sample skeleton tables reside on the CDHF in the SYS$PUBLIC:[KPGS] directory.
NOTE: The variable epoch must not be a z-variable for the SOHO ERNE skeleton table.

CSC/SD-92/6028
560-7SUG/0290

C–1

APPENDIX C—ERROR MESSAGES

C.1 Severe Error Messages
The following are indicators of severe errors:
ICSS_ATT_BUF_INV Attitude buffer not applicable
ICSS_ATT_FILE_INV Attitude files do not contain request
ICSS_ATT_READ_ERR Error reading attitude file
ICSS_BAD_DATA Invalid data record
ICSS_CATALOG_KP_FILE_ERROR Failure to catalog KP file
ICSS_CDF_INQ Error on CDF inquire
ICSS_CLOSE_ERR_CFL Error closing CONC_FILE_LIST
ICSS_CLOSE_ERR_TAEF Error closing TAE data file
ICSS_CLOSE_ERROR_UDS_SEND_ID Error closing UDS_SEND_ID data store
ICSS_CLOSE_KP_UPD_QUAL_ERR Error on closing KP quality update request file
ICSS_CLOSE_OLA_ERR Error closing assembled level-zero data file
ICSS_CLOSE_OLZ_ERR Error closing online level-zero data file
ICSS_CMD_LUN_ERR Error obtaining logical unit number for transfer command file
ICSS_CMD_OPEN_ERR Error opening the transfer command file
ICSS_CMD_WRITE_ERR Error writing the transfer command file
ICSS_COOR_SYS_INV Coordinate system request invalid
ICSS_CR_DEF Error creating deferred request
ICSS_DATA_OPEN_ERR Error opening data specification file
ICSS_DATA_READ_ERR Error reading the transfer filenames
ICSS_DATA_WRITE_ERR Error writing to data specification file
ICSS_DATABASE_COMMIT Error committing changes to the database
ICSS_DB_CONNECT_ERR Error on attempt to connect to the ICSS database
ICSS_DB_DAILY_XFER_ERR Error retrieving daily_xfer_history table
ICSS_DB_ERR Error accessing database
ICSS_DB_GET_DECOM Error getting information from decom_spec table
ICSS_DB_GET_DESCR_ERR Error getting descriptor information from database
ICSS_DB_GET_MISS_ERR Error getting mission information from database
ICSS_DB_GET_PHYS_ERR Error obtaining !AS physical filename from the database for

logical identifier !AS,/fao=2
ICSS_DB_GET_SEND_ID Error getting next send id from database
ICSS_DB_GET_VERSION_ERR Error obtaining latest version from database for !AS

file,/fao=1
ICSS_DB_INSERT_ERR Error inserting into daily_xfer_history table of database
ICSS_DB_LOGOFF_ERR Error logging off the database
ICSS_DB_MISSING_ADI_NUM ADI number not in database for !AS file,/fao=1
ICSS_DB_REF_FILE_ERR Error getting reference files from database
ICSS_DB_RETRIEVE_ERR Error retrieving UDS request from database
ICSS_DB_USER_INFO_ERR Error retrieving from istp_user table
ICSS_DB_USER_PRIV_ERR Error getting information from USER_ACCESS_PRIVILEGE

table
ICSS_DECOM_CLOSE_ERR Error closing the decom specification file
ICSS_DECOM_CLOSE_NEW Error closing the modified decom specification file, no

changes made
ICSS_DECOM_DB_DELETE Error deleting an entry from the database
ICSS_DECOM_DB_INSERT Error creating an entry into the database
ICSS_DECOM_DB_UPDATE Error updating an entry in the database

CSC/SD-92/6028
560-7SUG/0290

C–2

ICSS_DECOM_DEL_N_CMT Error deleting old decom specification file and committing
changes to database

ICSS_DECOM_DELETE_ERR Error deleting the decom specification file
ICSS_DECOM_DELETE_OLD Error deleting old decom specification file
ICSS_DECOM_GETLUN_ERR Error retrieving logical unit number
ICSS_DECOM_MISMATCH Decom specification file does not match mission/instrument of

level-zero file
ICSS_DECOM_OPEN_ERR Error opening the decom specification file
ICSS_DECOM_OPEN_NEW Error opening the decom specification file, no changes made
ICSS_DECOM_OPEN_OLD Error opening the old decom specification file, no changes

made
ICSS_DECOM_READ_ERR Error reading from the decom specification file
ICSS_DECOM_RENAME_ERR Error renaming the decom specification file, no changes made
ICSS_DECOM_WRITE_ERR Error writing to the decom specification file
ICSS_DEL_ATTR_FILE Error deleting attribute file
ICSS_DELETE_CFL Error deleting Concatenate File List
ICSS_DELETE_JOB_ERROR Error deleting transfer request from job queue
ICSS_EREAD_TIMCOEF_FILE Error reading from the timing coefficient. file
ICSS_ERR_CON_EPOCH Error converting EPOCH time to IDTF time
ICSS_ERR_CONVERTING Error converting VMS time to IDTF time
ICSS_ERR_DELETING_MAIL_FILE Error deleting get data from DDF mail file
ICSS_ERR_READ_CDF Error reading from CDF
ICSS_ERR_READ_SLP Error reading from the SLP file
ICSS_ERR_SPAWNING_DDF_
MAIL_CMD

Error spawning the get DDF data mail command file

ICSS_EX_NUM_TRIES Number of attempts for this job exceeded
ICSS_FILENAME_TOO_LONG Specified filename exceeds max length
ICSS_FILE_SIZE_ERR Error obtaining file size
ICSS_FORM_FAIL Error executing SQL form
ICSS_GET_HK_REC_SIZE Error obtaining the record size of the housekeeping file
ICSS_GET_LUN_ERROR Error getting logical unit number
ICSS_GET_LUN_ERROR_UDS_
SEND_ID

Error getting logical unit number

ICSS_GET_LZ_REC_SIZE Error obtaining the record size of the level-zero file
ICSS_GET_SD_FRAMES Error getting the number of frames from the SIRIUS file,

!AS,/fao=1
ICSS_GETLUN_PR_HK Error obtaining a logical unit number for the primary

housekeeping file
ICSS_GETLUN_PR_LZ Error obtaining a logical unit number for the primary level-

zero file
ICSS_GETLUN_PR_MAG Error obtaining a logical unit number for the primary

magnetometer file
ICSS_GETLUN_SC_HK Error obtaining a logical unit number for the secondary

housekeeping file
ICSS_GETLUN_SC_LZ Error obtaining a logical unit number for the secondary level-

zero file
ICSS_GETLUN_SC_MAG Error obtaining a logical unit number for the secondary

magnetometer file
ICSS_GETLUN_SD Error obtaining a logical unit number for the SIRIUS file,

!AS,/fao=1
ICSS_INQUIRE_LZ_ERR_ALZ Error opening assembled level-zero data file
ICSS_INQUIRE_LZ_ERR_OLZ Error determining online level-zero data file record size
ICSS_ILVMSTI Invalid VMS time specified

CSC/SD-92/6028
560-7SUG/0290

C–3

ICSS_INIT_FAIL_PUT_MSG Failure to assign mailbox channel; unable to call
ICSS_PUT_MSG

ICSS_INIT_FAIL ICSS_INIT failure; unable to assign mailbox channel
ICSS_INV_HK_READCALL Requested file to read does not exist—this condition should

not happen
ICSS_INV_HK_REQTYPE Invalid housekeeping request type—request must be BY

OFFSET, BY TIME, or IN SEQUENCE
ICSS_INV_HK_REQTIME Invalid requested time—the time is not in the range of the

housekeeping files
ICSS_INV_LZ_READCALL Requested file to read does not exist—this condition should

not happen
ICSS_INV_LZ_REQTYPE Invalid level-zero request type—request must be BY

OFFSET, BY TIME, or IN SEQUENCE
ICSS_INV_LZ_REQTIME Invalid requested time—the time is not in the range of the

level-zero files
ICSS_INV_LZSTART_TIME Invalid LZ start time
ICSS_INV_LZSTOP_TIME Invalid LZ stop time
ICSS_INV_PACK_TYPE Invalid package type for spin-stabilized data
ICSS_INV_SD_OFF Invalid SIRIUS minor frame offset specified, must be greater

than 0
ICSS_INV_SD_READCALL Requested file to read does not exist—this condition should

not happen
ICSS_INV_SD_REQTIME Invalid requested time—the time is not in the range of the

SIRIUS files
ICSS_INV_SD_REQTYPE Invalid SIRIUS request type—request must be BY OFFSET,

BY TIME, or IN SEQUENCE
ICSS_INV_SRC_SYS Invalid source coordinate system
ICSS_INV_SRC_TARGET_SYS Invalid source and target coordinate systems
ICSS_INV_STABIL_TYPE Invalid stabilization type for ret attitude routine
ICSS_INV_START_TIME Invalid or non-existent KP file epoch start time
ICSS_INV_STOP_TIME Invalid KP file epoch stop time
ICSS_INV_TARGET_SYS Invalid target coordinate system
ICSS_INV_TIME_INT Invalid time interval specified
ICSS_INV_TIME_ERR Error obtaining file times for !AS file,/fao=1
ICSS_INV_TIME_PR_ATT Error obtaining the file times for the primary attitude file
ICSS_INV_TIME_PR_ORB Error converting the file times for the primary orbit file
ICSS_INV_TIME_SC_ATT Error obtaining the file times for the secondary attitude file
ICSS_INV_TIME_SC_ORB Error converting the file times for the secondary orbit file
ICSS_INV_VEC_INP Attitude is colinear with reference vector
ICSS_INV_VMS_TIME Invalid VMS time specified
ICSS_INV_XFER_TIME Invalid transfer time specified
ICSS_INVALID_BYTE_RANGE Invalid byte range for decom specification
ICSS_INVALID_BYTE_SPEC Invalid byte number for decom specification
ICSS_INVALID_DECOM_SPEC Invalid decom specification
ICSS_INVALID_MF_DECOM_SPEC Invalid minor frame for decom specification
ICSS_INVALID_MF_RANGE Invalid minor frame range specified
ICSS_INVALID_MF_RANGE_ INCREMENT Invalid increment specified for range
ICSS_INVALID_MF_RANGE_START Invalid minor frame specified for start of range
ICSS_INVALID_MF_RANGE_STOP Invalid minor frame specified for end of range
ICSS_INVIDTFYR Invalid idtf year
ICSS_INVIDTFDAY Invalid idtf day
ICSS_INVIDTFMSEC Invalid idtf millisecond
ICSS_IO_ERROR Error reading/writing from/to std$input
ICSS_JOB_EXECUTING Job cannot be deleted or updated, it is currently executing

CSC/SD-92/6028
560-7SUG/0290

C–4

ICSS_KP_OUTFILE_OPEN_ERR Error opening KP output file
ICSS_KP_OUTFILE_WRITE_ERR Error writing KP output file
ICSS_KPGS_INFILE_OPEN_ERR Error opening KPGS parameter input file
ICSS_KPGS_INFILE_READ_ERR Error reading from KPGS parameter input file
ICSS_KPGS_INFILE_CLOSE_ERR Error closing KPGS parameter input file
ICSS_KPGS_INFILE_INV_REC Invalid records in the KPGS parameter input file
ICSS_LZ_OUT_OF_RANGE Level-zero data file out of requested time range
ICSS_LUN_ERR Error obtaining a logical unit number
ICSS_LUN_ERR_DATA_FILE_SPEC Error opening logical unit number for data file specification
ICSS_LUN_ERR_MAIL_FILE Error opening logical unit number for the mail file
ICSS_MAIL_OPEN_ERR Error on attempt to open mail file
ICSS_MAIL_WRITE_ERR Error on attempt to write to mail file
ICSS_MF_OUT_OF_RANGE Minor frame out-of-range for decom specification
ICSS_MF_RANGE_PREV_SET Attempt to reset previously defined minor frame range
ICSS_NEW_SPEC_FILE Error creating new data transfer file specification
ICSS_NO_CD_FILE The specified instrument calibration file not in catalog
ICSS_NO_CDHF_DPA Logical file for CDHF DPA does not exist for date
ICSS_NO_DATA No data records in file
ICSS_NO_FILE_ERR !AS file does not exist, /fao=1
ICSS_NO_MAIL Unable to send user mail
ICSS_NO_PF_FILE Instrument parameter file not in catalog
ICSS_NO_PR_ATT Primary attitude file does not exist
ICSS_NO_PR_HK Primary housekeeping file does not exist
ICSS_NO_PR_LZ Primary level-zero file does not exist
ICSS_NO_PR_MAG Primary magnetometer file does not exist
ICSS_NO_PR_ORB Primary orbit file does not exist
ICSS_NO_PR_SD Primary SIRIUS files do not exist
ICSS_NOT_KP_UPD_QUAL_FILE Not valid KP quality update request file
ICSS_NOT_KP_UPD_QUAL_USER User not owner of KP quality update request file
ICSS_NSSDC_COPY_ERR Error performing copy of files to NSSDC
ICSS_OPEN_ATTR_FILE Error opening attribute file
ICSS_OPEN_ERR Error opening the data specification file
ICSS_OPEN_FILE_ERR Error opening !AS file,/fao=1
ICSS_OPEN_ERR_ALZ Error opening assemble level-zero data file
ICSS_OPEN_ERR_DATA_FILE_SPEC Error opening data file specification
ICSS_OPEN_ERR_MAIL_FILE Error opening mail message file
ICSS_OPEN_ERR_OLZ Error opening online level-zero data file
ICSS_OPEN_ERR_SLZ Error opening the scratch decommutated level-zero data file
ICSS_OPEN_ERR_TAEF Error opening TAE data file
ICSS_OPEN_ERROR_UDS_SEND_ID Error opening UDS_SEND_ID data store
ICSS_OPEN_FILE_SD Error opening the SIRIUS file, !AS,/fao=1
ICSS_OPEN_KP_UPD_QUAL_ERR Error opening KP quality update request file
ICSS_OPEN_PR_ATT Error opening the primary attitude file
ICSS_OPEN_PR_HK Error opening the primary housekeeping file
ICSS_OPEN_PR_LZ Error opening the primary level-zero file
ICSS_OPEN_PR_MAG Error opening the primary magnetometer file
ICSS_OPEN_PR_ORB Error opening the primary orbit file
ICSS_OPEN_SC_ATT Error opening the secondary attitude file
ICSS_OPEN_SC_HK Error opening the secondary housekeeping file
ICSS_OPEN_SC_LZ Error opening the secondary level-zero file
ICSS_OPEN_SC_MAG Error opening the secondary magnetometer file
ICSS_OPEN_SC_ORB Error opening the secondary orbit file
ICSS_OPEN_SLP Error opening the SLP file
ICSS_OPEN_SPEC_FILE Error opening data transfer specification file

CSC/SD-92/6028
560-7SUG/0290

C–5

ICSS_OPEN_TIMCOEF Error opening the timing coef. file
ICSS_ORB_BUF_INV Orbit buffer not applicable
ICSS_ORB_FILE_INV Orbit files do not contain request
ICSS_ORB_READ_ERR Error reading orbit file
ICSS_OUTPUT_FILE_CLOSERR Output file '!AS' cannot be closed, /fao=1
ICSS_PI_OPEN_ERR Error opening PI account information file
ICSS_PI_READ_ERR Error reading PI account information file
ICSS_PUT_SFDU_ERR Error putting parameter to a SFDU header record
ICSS_READ_ATTR_FILE Error reading attribute file
ICSS_READ_ERR_DATA_FILE_SPEC Error reading from the data file specification
ICSS_READ_ERROR_LZ_HEADER Error reading level-zero header record from disk
ICSS_READ_ERROR_LZ_RECORD Error reading level-zero data record from disk
ICSS_READ_ERROR_SFDU Error reading SFDU header record from disk
ICSS_READ_ERROR_UDS_SEND_ID Error reading UDS_SEND_ID data store
ICSS_READ_KP_UPD_QUAL_ERR Error reading KP quality update request file
ICSS_READ_PR_HK Error reading the primary housekeeping file data record
ICSS_READ_PR_LZ Error reading the primary level-zero file data record
ICSS_READ_SC_HK Error reading the secondary housekeeping file data record
ICSS_READ_SC_LZ Error reading the secondary level-zero file data record
ICSS_READ_SD Error reading the data block from the SIRIUS file, !AS,/fao=1
ICSS_READ_SD_CBLK Error reading the control block from the SIRIUS file,

!AS,/fao=1
ICSS_READHDR_PR_HK Error reading the header (file label record) in the primary

housekeeping file
ICSS_READHDR_PR_LZ Error reading the header (file label record) in the primary

level-zero file
ICSS_READHDR_PR_MAG Error reading the header (file label record) in the primary

magnetometer file
ICSS_READHDR_SC_HK Error reading the header (file label record) in the secondary

housekeeping file
ICSS_READHDR_SC_LZ Error reading the header (file label record) in the secondary

level-zero file
ICSS_READHDR_SC_MAG Error reading the header (file label record) in the secondary

magnetometer file
ICSS_READMSGDATA_SD Error reading the message data block from the SIRIUS file,

!AS,/fao=1
ICSS_READTIMES_PR_ATT Error reading the file times from the primary attitude file
ICSS_READTIMES_SC_ATT Error reading the file times from the secondary attitude file
ICSS_READTIMES_PR_ORB Error reading the file times from the primary orbit file
ICSS_READTIMES_SC_ORB Error reading the file times from the secondary orbit file
ICSS_READTIMES_ERR Error reading the file times from the !AS file,/fao=1
ICSS_REWIND_ERROR_UDS_ SEND_ID Error rewinding UDS_SEND_ID data store
ICSS_SC_AFTER_PR_ATT Invalid secondary attitude file, begins on or after start time of

primary file
ICSS_SC_AFTER_PR_HK Invalid secondary housekeeping file, begins on or after start

time of primary file
ICSS_SC_AFTER_PR_LZ Invalid secondary level-zero file, begins on or after start time

of primary file
ICSS_SC_AFTER_PR_MAG Invalid secondary magnetometer file, begins on or after start

time of primary file
ICSS_SC_AFTER_PR_ORB Invalid secondary orbit file, begins on or after start time of

primary file
ICSS_SC_AFTER_PR_PSP Invalid secondary POLAR spin phase file, begins on or after

start time of primary file

CSC/SD-92/6028
560-7SUG/0290

C–6

ICSS_SC_AFTER_PR_SA Invalid secondary SOHO attitude file, begins on or after start
time of primary file

ICSS_SC_AFTER_PR_SD Invalid secondary SIRIUS files, begin on or after start time of
primary SIRIUS files

ICSS_SD_CBLK_ERR Error in control block from the file !AS,/fao=1
ICSS_SEND_REQ_PROCEED Proceed with previous transfer request
ICSS_SFDU_HDR_CLOSE_ERR Error closing SFDU header file '!AS',/fao=1
ICSS_SFDU_HDR_OPEN_ERR Error opening SFDU header
ICSS_SFDU_HDR_WRITE_ERR SFDU header cannot be written
ICSS_SFDU_READ_ERR Error reading record from SFDU header
ICSS_SFDU_TERM_ERR Error writing SFDU records to SFDU header file
ICSS_SLP_LUN Error getting a logical unit number for the SLP file
ICSS_SLP_NO_BODY SLP file does not contain the body requested
ICSS_SPAWN_ERR Error spawning DCL command line
ICSS_SUBMIT_ERROR Error submitting transfer request to the job queue
ICSS_TEMP_DISK_EXCEED Temporary disk space allowed per transfer
ICSS_TIMCOEF_LUN Error getting a logical unit number for the timing coefficient

file
ICSS_UPDATE_DCM_LZ_HDR Error updating the information in the decommutated level-zero

header record
ICSS_WRITE_CFL Error writing to the updated Concatenate File List
ICSS_WRITE_DCM_LZ Error writing a decommutated level-zero record
ICSS_WRITE_DCM_SPEC Error writing the decom specification record to the decom

level-zero file
ICSS_WRITE_ERR_MAIL_FILE Error writing to the mail message file
ICSS_WRITE_ERR_TAEF Error writing TAE data file
ICSS_WRITE_ERROR_UDS_SEND_ID Error writing to UDS_SEND_IDS data store
ICSS_WRITE_ERROR_SFDU Error writing SFDU header record to disk
ICSS_WRITE_ERROR_LZ_HEADER Error writing level-zero header record to disk
ICSS_WRITE_ERROR_LZ_RECORD Error writing level-zero data record to disk
ICSS_XFER_DATA_AVAIL Data is available for user transfer
ICSS_XFER_QUOTA_EXCEED Transfer quota for 24 hours exceeded
[RTC_CONNECT] connecting to host Connection to host in progress
[RTC_CONNECT] error issuing connect command Error returned from connect call; implies a network or TCP/IP

problem
[RTC_CONNECT] error issuing socket command Error returned from socket call; implies a network or TCP/IP

problem
[RTC_CONNECT] host unknown Specified host is unknown
[RTC_CONNECT] unable to connect error Unable to connect to the host; implies a network or TCP/IP

problem
[RTC_LOGINUSER] error from socket_read An error occurred on a socket read operation
[RTC_LOGINUSER] error from socket_write An error occurred on a socket write operation
[RTC_LOGINUSER] error reading username
command

An error occurred reading the username string

[RTC_LOGINUSER] error sending password
command

An error occurred sending the password string to or receiving
the password string from the server

[RTC_LOGINUSER] error sending username
command

An error occurred sending the username string to or receiving
the username string from the server

[RTC_LOGINUSER] error sending WAIT
command

An error occurred sending the WAIT command

[RTC_LOGINUSER] error sending
WTG ACK

An error occurred sending the WTG acknowledgment

SS$_BADPARAM REQ_SYS is something other than 1 or 2
SS$_SSFAIL An error occurred while trying to calculate the tilt angle

CSC/SD-92/6028
560-7SUG/0290

C–7

Accepted Access to desired data is successful
Denied Access to desired data is denied
Remote system not operational Server system is not operational
Socket read error—socket failed TCP/IP error

C.2 Warning Messages
The following messages warn the operator of potential problems:

ICSS_ATT_EOF End of file error reading attitude file
ICSS_AVG_SPIN_RATE_ERR Calculated average spin rate for !AS level-zero housekeeping

data record is equal to zero, /fao_count=1
ICSS_CLOSE_ERR_DATA_FILE_ SPEC Error closing the data file specification
ICSS_CLOSE_ERR_MAIL_FILE Error closing the mail file
ICSS_EOF_SD End of file reached in the SIRIUS files
ICSS_EOF_PR_HK End of file reached reading the primary housekeeping file
ICSS_EOF_PR_LZ End of file reached reading the primary level-zero file
ICSS_INPUT_FILE_CLOSERR Error closing '!AS' input file, /fao=1
ICSS_INVALID_MODE Invalid telemetry mode indicator !AS found in !AS level-zero

housekeeping data record header, /fao_count=2
ICSS_KP_DATATYPE_ERR Key parameter file contains variables having non-standard

data type
ICSS_MAN_CLEANUP Manual cleanup of the ICSS_UDS directory may be needed
ICSS_MSG_BLK_RET_SD SIRIUS data file message block has been returned
ICSS_MF_DECOM_NOT_SET Decom specification not set for indicated minor frame
ICSS_NOT_ENOUGH_DATA Not enough data to perform interpolation
ICSS_ORB_EOF End of file error reading orbit file
ICSS_REQ_TIME_ERR User requested time not in !AS level-zero housekeeping data

record, /fao_count=1
ICSS_SFDU_BUF_FULL SFDU buffer is full, no comment written
ICSS_SPIN_RATE_ERR Cannot compute accurate spin rate and/or standard deviation

of spin rate for !AS level-zero housekeeping data record
ICSS_STANDING_RESUBMIT Problem occurred before standing request query performed.
ICSS_TIME_OUTRANGE Request time out of range of files

C.3 Success Messages
The following messages indicate that operations have proceeded without errors:

ICSS_SUCCESSFUL Successful completion
ICSS_UNSUCCESSFUL Unsuccessful completion
ICSS_QUEUE_UDS_SUCCESS Queue UDS send jobs completed successfully
ICSS_QUEUE_UDS_FAIL Queue UDS send jobs completed unsuccessfully
ICSS_NSSDC_XFER_FAIL Transfer to NSSDC job completed unsuccessfully
ICSS_NSSDC_XFER_SUCCESS Transfer to NSSDC job completed successfully

C.4 Informational Messages
The following messages inform the operator of system conditions:
ICSS_DEL_SEND_REQ Outstanding user send data request to be deleted
ICSS_GAP_IN_FILE A gap occurred since the last major frame read
ICSS_GET_DDF_RET_MES User '!AS' requests the retrieval of '!AS',/fao=2
ICSS_GET_NEXT_FILE Next file is needed, no interpolation performed
ICSS_NEW_SEND_REQ New user send data request to be generated

CSC/SD-92/6028
560-7SUG/0290

C–8

ICSS_NEXT_RECORD Next record needs to be read
ICSS_NO_INTERP No interpolation necessary
ICSS_PREV_EQU_INV Previous equation invalid for request
ICSS_PREV_BUFF_INV Previous buffer invalid
ICSS_SRC_EQ_TARGET Source and target coordinate systems are identical
ICSS_UPD_SEND_REQ Outstanding user send data request to be updated

CSC/SD-92/6028
560-7SUG/0290

D–1

APPENDIX D—KPGS DELIVERY FORM

KPGS deliveries are made electronically. For a sample delivery form, go to the Sample_Delivery Form file
in the SYS$PUBLIC:[KPGS] directory on the CDHF.

CSC/SD-92/6028
560-7SUG/0290

AC–1

ABBREVIATIONS AND ACRONYMS

3-DP 3-Dimensional Plasma

ACF attitude control reference frame

ANSI American National Standards Institute

AP A index value

ASCII American Standard Code for Information Interchange

ATC absolute time code

bpi bits per inch

CCR configuration change request

CDF common data format

CDHF Central Data Handling Facility

CELIAS Charge, Element, and Isotope Analysis System

CGMLT corrected geomagnetic local time

CM configuration management

CPI Comprehensive Plasma Composition

DARN Dual Auroral Radar Network

DBA database administrator

DBMS database management system

DCL Digital Command Language

DECnet Digital Equipment Corporation’s network

DFCD data format control document

dn data number

DSN Deep Space Network

EBCDIC extended binary-coded decimal interchange code

ED eccentric-dipole

EDMLT eccentric-dipole magnetic local time

EFD Electric Field Detector

EPIC Energy Particle and Ion Composition

ERNE Energetic and Relativistic Nuclei and Electron (Experiment)

FTP File Transfer Protocol

GCI Geocentric Celestial Inertial

CSC/SD-92/6028
560-7SUG/0290

AC–2

GDCF Generic Data Capture Facility

GEO Geographic

GEOTAIL Geomagnetic Tail Laboratory

GSE Geocentric Solar Ecliptic

GSFC Goddard Space Flight Center

GSM Geocentric Solar Magnetospheric

IBM International Business Machines, Inc.

ICSS ISTP CDHF Software System

IDTF internal day time format

IEEE Institute of Electrical and Electronics Engineers

IMP International Magnetosphere Physics

IMSL International Mathematics and Statistics Library

IP Internet Protocol

ISTP International Solar-Terrestrial Physics

KDF KPGS delivery form

KITT KPGS Integration Test Team

km kilometer

KP K index value

KPGS key parameter generation software

MFE Magnetic Field Explorer

MFI Magnetic Fields Investigation

MSPC modified spin plan coordinate

MTC modified topographic coordinate

NAG Numerical Algorithms Group

NASA National Aeronautics and Space Administration

NRT near-real time

nT nanoteslas

PI principal investigator

POLAR Polar Plasma Laboratory Mission

RDAF remote data analysis facility

rpm radians per minute

R-S Reed-Solomon

CSC/SD-92/6028
560-7SUG/0290

AC–3

SEAS Systems, Engineering, and Analysis Support

sec second

SFDU standard formatted data unit

SIDS simulated instrument data set

SIRIUS Scientific Information Retrieval Integrated Utilization System

SLP solar/lunar/planetary

SM Solar Magnetic

SOHO Solar and Heliospheric Observatory

SSDM SEAS Systems Development Methodology

SWE Solar Wind Experiment

SWIM Solar Wind Interplanetary Mission

TAI international atomic time

TBD to be determined

TBS to be supplied

TCP Transmission Control Protocol

UTC universal time coordinated

VAX virtual address extension

VMS virtual memory storage

WIND Interplanetary Physics Laboratory Mission

RF–1

REFERENCES

1. National Aeronautics and Space Administration (NASA), International Solar-Terrestrial
Physics (ISTP) Key Parameter Generation Software (KPGS) Standards and Conventions,
Version 1.3, March 1994

2. Computer Sciences Corporation (CSC), CSC/SD-92/6037R6.3, International Solar-
Terrestrial Physics (ISTP) Program Central Data Handling Facility (CDHF) Users Guide,
Release 6.3, May 1996

3. —, CSC/TM-91/6084, International Solar-Terrestrial Physics (ISTP) Central Data
Handling Facility (CDHF) Key Parameter Generation Software (KPGS) Integration Test
Plan, Revision 1, Review, March 1995

4. NASA, NSSDC/WDC-A-R&S 91-31, NSSDC CDF User’s Guide, Version 2.4,
January 1994

5. CSC, CSC/TR-91/6014, Data Format Control Document Between the International Solar-
Terrestrial Physics (ISTP) Program Mission Operations and Systems Development
Division (MOSDD) Ground Data Processing System and the ISTP Mission Investigators,
Revision 2, May 1996

6. Numerical Algorithms Group Limited, The NAG Fortran Library Manual, Mark 15, First
Edition, June 1991

7. International Mathematics and Statistics Library, User’s Manual, IMSL SFUN/LIBRARY,
Version 2.1, January 1989

